Publications by authors named "Roper R"

As large clinical and multiomics datasets and knowledge resources accumulate, they need to be transformed into computable and actionable information to support automated reasoning. These datasets range from laboratory experiment results to electronic health records (EHRs). Barriers to accessibility and sharing of such datasets include diversity of content, size and privacy.

View Article and Find Full Text PDF
Article Synopsis
  • The syndrome is related to a decrease in the gene from chromosome 21, affecting cognitive traits in disorders like Down syndrome (DS) and Alzheimer's disease (AD).
  • Overexpression or underexpression of this gene in mouse models leads to significant skeletal abnormalities, demonstrating that adjusting gene copy number can influence skeletal health.
  • The review focuses on the effects of reduced gene expression on skeletal health in individuals with the syndrome and suggests that understanding these impacts could lead to better therapies and improved quality of life.
View Article and Find Full Text PDF

Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression.

View Article and Find Full Text PDF

Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions.

View Article and Find Full Text PDF

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and was trending overexpression.

View Article and Find Full Text PDF

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS.

View Article and Find Full Text PDF

Objective: There is uncertainty around the safety of SSRIs for treating depression during pregnancy. Nevertheless, the use of SSRIs has been gradually increasing, especially during the COVID-19 pandemic period. We aimed to (1) characterize maternal depression rate and use of SSRIs in a recent 10-year period, (2) address confounding by indication, as well as socioeconomic and environmental factors, and (3) evaluate associations of the timing of SSRI exposure in pregnancy with risk for preterm birth (PTB), low birthweight (LBW), and small for gestational age (SGA) infants among women with depression before pregnancy.

View Article and Find Full Text PDF

Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine.

View Article and Find Full Text PDF

The Coronavirus disease 2019 (COVID-19) pandemic demonstrated the threat of airborne pathogenic respiratory viruses such as the airborne Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The ability to detect circulating viruses in a workplace or dormitory setting allows an early warning system that can alert occupants to implement precautions (e.g.

View Article and Find Full Text PDF

Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes.

View Article and Find Full Text PDF

Background: COVID-19 in pregnant people increases the risk for poor maternal-fetal outcomes. However, COVID-19 vaccination hesitancy remains due to concerns over the vaccine's potential effects on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and boosters on maternal SARS-CoV-2 infections and birth outcomes.

View Article and Find Full Text PDF

is a family of enveloped, brick-shaped or ovoid viruses. The genome is a linear molecule of dsDNA (128-375 kbp) with covalently closed ends. The family includes the sub-families , whose members have been found in four orders of insects, and whose members are found in mammals, birds, reptiles and fish.

View Article and Find Full Text PDF
Article Synopsis
  • Monkeypox virus (MPXV) became a big concern in 2022, causing over 86,000 infections worldwide, and could spread more if not controlled.
  • Public health strategies like isolation and vaccination have helped, but cases are still appearing in 28 countries as of March 2023.
  • There's a need for better vaccines and treatments, more data, and international cooperation to manage the outbreak and protect vulnerable groups from getting infected.
View Article and Find Full Text PDF

Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice.

View Article and Find Full Text PDF

Background: Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-II receptor blockers (ARB), the most commonly prescribed antihypertensive medications, counter renin-angiotensin-aldosterone system (RAAS) activation via induction of angiotensin-converting enzyme 2 (ACE2) expression. Considering that ACE2 is the functional receptor for SARS-CoV-2 entry into host cells, the association of ACEi and ARB with COVID-19 outcomes needs thorough evaluation.

Methods: We conducted retrospective analyses using both unmatched and propensity score (PS)-matched cohorts on electronic health records (EHRs) to assess the impact of RAAS inhibitors on the risk of receiving invasive mechanical ventilation (IMV) and 30-day mortality among hospitalized COVID-19 patients.

View Article and Find Full Text PDF

With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice.

View Article and Find Full Text PDF

Background: We conducted a longitudinal study to estimate immunity produced in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among university students over seven months.

Methods: All participants were attending a public university and resided in Pitt County, North Carolina. University students enrolled weekly for 10 weeks between 26 August 2020 and 28 October 2020, resulting in 136 young adults completing at least one study visit by 17 November 2020.

View Article and Find Full Text PDF

Background: COVID-19 infection in pregnant people has previously been shown to increase the risk for poor maternal-fetal outcomes. Despite this, there has been a lag in COVID-19 vaccination in pregnant people due to concerns over the potential effects of the vaccine on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and booster on maternal COVID-19 breakthrough infections and birth outcomes.

View Article and Find Full Text PDF

Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well-being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline-specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph-based "Translator" system capable of integrating existing biomedical data sets and "translating" those data into insights intended to augment human reasoning and accelerate translational science.

View Article and Find Full Text PDF

Animal models of Down syndrome (DS) provide an essential resource for understanding genetic, cellular, and molecular contributions to traits associated with trisomy 21 (Ts21). Recent genetic enhancements in the development of DS models, including the new TcHSA21rat model (Kazuki et al.), have potential to transform our understanding of and potential therapies for Ts21.

View Article and Find Full Text PDF

The neurotypical spatiotemporal patterns of gene expression are disrupted in Down syndrome (DS) by trisomy of human chromosome 21 (Hsa21), resulting in altered behavioral development and brain circuitry. The Ts65Dn DS mouse model exhibits similar phenotypes to individuals with DS due to three copies of approximately one-half of the genes found on Hsa21. Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1a (Dyrk1a), one of these triplicated genes, is an attractive target to normalize brain development due to its influence in cellular brain deficits seen in DS.

View Article and Find Full Text PDF

Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions about individual patients and allocation of resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to best serve the needs of either older or younger adults. Models also need to be updated to reflect improvements in COVID-19 treatments.

View Article and Find Full Text PDF

Introduction: Health professional learners have limited exposure to breastfeeding patients from diverse backgrounds in clinical rotations. Instead, simulation-based training is used for lactation skills training. There are no validated or standardized simulations and assessment rubrics for lactation.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms.

View Article and Find Full Text PDF

Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice.

View Article and Find Full Text PDF