Determination of language hemispheric dominance (HD) in patients undergoing evaluation for epilepsy surgery has traditionally relied on the sodium amobarbital (Wada) test. The emergence of non-invasive methods for determining language laterality has increasingly shown to be a viable alternative. In this study, we assessed the efficacy of transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), compared to the Wada test, in determining language HD in a sample of 12 patients.
View Article and Find Full Text PDFNon-invasive methods such as Transcranial Magnetic Stimulation (TMS) and magnetoencephalography (MEG) aid in the pre-surgical evaluation of patients with epilepsy or brain tumor to identify sensorimotor cortices. MEG requires sedation in children or patients with developmental delay. However, TMS can be applied to awake patients of all ages with any cognitive abilities.
View Article and Find Full Text PDFPurpose: Transcranial magnetic stimulation (TMS) has recently emerged as a noninvasive alternative to the intracarotid sodium amytal (Wada) procedure for establishing hemispheric dominance (HD) for language. The accuracy of HD determined by TMS was examined by comparing against the HD derived by magnetoencephalography (MEG), a prominent clinical technique with excellent concordance with the Wada procedure.
Methods: Sixty-seven patients (54 patients ≤18 years) underwent language mapping with TMS and MEG as part of clinical epilepsy and tumor presurgical assessment.
Handb Clin Neurol
December 2019
This chapter presents a summary of current notions regarding cortical specialization for language and a description of the methods employed for the assessment of that specialization. We distinguish between the "canonical" model of language specialization as it evolved from the early observations of Broca and Wernicke, implicating the inferior frontal gyrus and the posterior temporal cortex of the speech dominant hemisphere (usually the left) and its modern variants that are based on both detailed studies of lesion-symptom correlations and on the results of functional brain mapping methods. The latter fall into two categories.
View Article and Find Full Text PDFCortical Stimulation Mapping (CSM) and the Wada procedure have long been considered the gold standard for localizing motor and language-related cortical areas and for determining the language and memory-dominant hemisphere, respectively. In recent years, however, non-invasive methods such as magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) have emerged as promising alternatives to the aforementioned procedures, particularly in cases where the invasive localization of eloquent cortex has proven to be challenging. To illustrate this point, we will first introduce the evidence of the compatibility of invasive and non-invasive methods and subsequently outline the rationale and the conditions where the latter methods are applicable.
View Article and Find Full Text PDFThe results of this magnetoencephalography study challenge two long-standing assumptions regarding the brain mechanisms of language processing: First, that linguistic processing proper follows sensory feature processing effected by bilateral activation of the primary sensory cortices that lasts about 100 msec from stimulus onset. Second, that subsequent linguistic processing is effected by left hemisphere networks outside the primary sensory areas, including Broca's and Wernicke's association cortices. Here we present evidence that linguistic analysis begins almost synchronously with sensory, prelinguistic verbal input analysis and that the primary cortices are also engaged in these linguistic analyses and become, consequently, part of the left hemisphere language network during language tasks.
View Article and Find Full Text PDFThough fairly well-studied in adults, less is known about the manifestation of resting state networks (RSN) in children. We examined the validity of RSN derived in an ethnically diverse group of typically developing 6- to 7-year-old children. We hypothesized that the RSNs in young children would be robust and would reliably show significant concordance with previously published RSN in adults.
View Article and Find Full Text PDFOngoing fluctuations of neuronal activity have long been considered intrinsic noise that introduces unavoidable and unwanted variability into neuronal processing, which the brain eliminates by averaging across population activity (Georgopoulos et al., 1986; Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al.
View Article and Find Full Text PDFThe aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area.
View Article and Find Full Text PDFCross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Several neuroimaging studies have suggested that functional brain connectivity networks exhibit "small-world" characteristics, whereas recent studies based on structural data have proposed a "rich-club" organization of brain networks, whereby hubs of high connection density tend to connect among themselves compared to nodes of lower density. In this study, we adopted an "attack strategy" to compare the rich-club and small-world organizations and identify the model that describes best the topology of brain connectivity. We hypothesized that the highest reduction in global efficiency caused by a targeted attack on each model's hubs would reveal the organization that better describes the topology of the underlying brain networks.
View Article and Find Full Text PDFObjective: The aim of the present study was to compare localization of the language cortex using cortical stimulation mapping (CSM), high gamma electrocorticography (hgECoG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS).
Methods: Language mapping using CSM, hgECoG, fMRI, and TMS were compared in nine patients with epilepsy. Considering CSM as reference, we compared language mapping approaches based on hgECoG, fMRI, and TMS using their sensitivity, specificity, and the results of receiver operating characteristic (ROC) analyses.
Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands.
View Article and Find Full Text PDFObjective: Accurate noninvasive assessment of motor function using functional MRI (fMRI) and magnetoencephalography (MEG) is a challenge in patients who are very young or who are developmentally delayed. In such cases, passive mapping of the sensorimotor cortex is performed under sedation. We examined the feasibility of using transcranial magnetic stimulation (TMS) as a motor mapping tool in awake children younger than 3 years of age.
View Article and Find Full Text PDFIn this study, we have addressed the question of functional brain reorganization for language in the presence and absence of anatomical lesions in two patients with epilepsy using cortical stimulation mapping and high gamma (HG) activity in subdural grid recordings. In both, the expressive language cortex was defined as the cortical patch below the electrode(s) that when stimulated resulted in speech arrest, and during speech expression tasks generated HG activity. This patch fell within the borders of Broca's area, as defined anatomically, in the case of the patient with a lesion, but outside that area in the other, lesion-free patient.
View Article and Find Full Text PDFNon-invasive assessment of hemispheric dominance for receptive language using magnetoencephalography (MEG) is now a well-established procedure used across several epilepsy centers in the context of pre-surgical evaluation of children and adults while awake, alert and attentive. However, the utility of MEG for the same purpose, in cases of sedated patients, is contested. Establishment of the efficiency of MEG is especially important in the case of children who, for a number of reasons, must be assessed under sedation.
View Article and Find Full Text PDFThe question we address here is whether the invasive presurgical brain mapping approaches of direct cortical stimulation and of the Wada procedure can be replaced by noninvasive functional neuroimaging methods (functional magnetic resonance imaging [fMRI], magnetoencephalography [MEG], transcranial magnetic stimulation and [TMS]). First, we outline the reasons for contemplating such a replacement. Second, we present evidence to the effect that the efficacy of the invasive and noninvasive methods, while suboptimal, is comparable.
View Article and Find Full Text PDFThe study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls.
View Article and Find Full Text PDFNon-invasive functional evaluation of the brain complements structural MRI imaging and has largely supplanted invasive techniques such as awake craniotomy. Techniques used for functional mapping of the brain include BOLD-functional MRI (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). We describe the case of a right-handed patient with a lesion centered in the left inferior perirolandic cortex who underwent fMRI, MEG, and TMS on a single day to facilitate maximal lesion resection while preserving eloquent cortex and eloquent white matter tracts.
View Article and Find Full Text PDFMagnetoencephalography (MEG) measures the field generated by the brain's electrical currents noninvasively. MEG is currently used for localization of epileptiform activity sources and for presurgical functional brain mapping. Such mapping with MEG requires the patients to be cooperative and lie still on their back for as long as ten minutes at a time.
View Article and Find Full Text PDFThe study investigated functional associations between left hemisphere occipitotemporal, temporoparietal, and inferior frontal regions during oral pseudoword reading in 58 school-aged children with typical reading skills (aged 10.4±1.6, range 7.
View Article and Find Full Text PDFThe model of a stochastic decision process unfolding in motor and premotor regions of the brain was encoded in single-trial magnetoencephalographic (MEG) recordings while ten healthy subjects performed a sensorimotor Reaction Time (RT) task. The duration of single-trial MEG signals preceding the motor response, recorded over the motor cortex contralateral to the responding hand, co-varied with RT across trials according to the model's prediction. Furthermore, these signals displayed the same properties of a "rising-to-a-fixed-threshold" decision process as posited by the model and observed in the activity of single neurons in the primate cortex.
View Article and Find Full Text PDFBrain activation profiles obtained using magnetoencephalography were compared between middle-school students experiencing reading difficulties and non-reading-impaired students during performance of a continuous printed word recognition task. Struggling readers underwent small-group remedial instruction, and students who showed significant gains in word reading efficiency at a one-year follow-up assessment were classified as Adequate Responders whereas those not demonstrating such gains as Inadequate Responders. At baseline, compared to Inadequate Responders, the activation profiles of Adequate Responders featured increased activity in the left middle, superior temporal, and ventral occipitotemporal regions, as well as in the right mesial temporal cortex.
View Article and Find Full Text PDF