Publications by authors named "Root D"

More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells.

View Article and Find Full Text PDF

Aberrant activation of the canonical WNT/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated beta-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate beta-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens.

View Article and Find Full Text PDF

Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation.

View Article and Find Full Text PDF

To prepare for foreseeable nurse workforce challenges that can affect patient satisfaction, hospitals can: Develop public-private partnerships to increase the pool of nurses; Allow for greater flexibility in nursing roles and structures; Establish performance-based metrics.

View Article and Find Full Text PDF

Rapid eye movement sleep (REM) has been implicated in a number of learning and memory tasks. Previous research has demonstrated that REM deprivation impairs the development of extinction of conditioned fear responses. However, the neurobiological mechanisms of this effect remain unclear.

View Article and Find Full Text PDF

The karyotypic chaos exhibited by human epithelial cancers complicates efforts to identify mutations critical for malignant transformation. Here we integrate complementary genomic approaches to identify human oncogenes. We show that activation of the ERK and phosphatidylinositol 3-kinase (PI3K) signaling pathways cooperate to transform human cells.

View Article and Find Full Text PDF

Large-scale RNA interference (RNAi)-based analyses, very much as other 'omic' approaches, have inherent rates of false positives and negatives. The variability in the standards of care applied to validate results from these studies, if left unchecked, could eventually begin to undermine the credibility of RNAi as a powerful functional approach. This Commentary is an invitation to an open discussion started among various users of RNAi to set forth accepted standards that would insure the quality and accuracy of information in the large datasets coming out of genome-scale screens.

View Article and Find Full Text PDF

A new fluorescent labeling procedure specific for the strut sequence of myosin subfragment-1's 50kDa cleft was developed using CY3 N-hydroxy succinimidyl ester as a hydrophobic tag and hydrophobic interaction chromatography to purify the major labeled species which retained actin-activated ATPase activity. Stern-Volmer analysis suggests that the CY3 is in close proximity to basic residues, consistent with inspection of the mapped labeling site in the atomic model. Fluorescence polarization indicates that the CY3 becomes more mobile upon actin binding, supporting a location near the actomyosin interface.

View Article and Find Full Text PDF

The discovery that RNA interference (RNAi) is functional in mammalian cells led us to form The RNAi Consortium (TRC) with the goal of enabling large-scale loss-of-function screens through the development of genome-scale RNAi libraries and methodologies for their use. These resources form the basis of a loss-of-function screening platform created at the Broad Institute. Our human and mouse libraries currently contain >135,000 lentiviral clones targeting 27,000 genes.

View Article and Find Full Text PDF

A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.

View Article and Find Full Text PDF

In this short review we examine the potential of single-molecule assays in drug development and in basic research to provide new types of information at the smallest assay scales. A key advantage of many single-molecule assays is the requirement for conservative amounts of precious sample compared to conventional assays. In addition, they measure processes that are not observed directly in molecular ensembles.

View Article and Find Full Text PDF

To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes.

View Article and Find Full Text PDF

The nanomechanical properties of the coiled-coils of myosin are fundamentally important in understanding muscle assembly and contraction. Force spectra of single molecules of double-headed myosin, single-headed myosin, and coiled-coil tail fragments were acquired with an atomic force microscope and displayed characteristic triphasic force-distance responses to stretch: a rise phase (R) and a plateau phase (P) and an exponential phase (E). The R and P phases arise mainly from the stretching of the coiled-coils, with the hinge region being the main contributor to the rise phase at low force.

View Article and Find Full Text PDF

Popular views of force generation in muscle indicate that a lever arm in the myosin head initiates displacement of the thin filament. However, this lever arm is attached to the thick filament backbone by a flexible combination of coiled coils and hinges in the myosin subfragment-2 (S2); therefore, efficient force generation depends on tension development in this linking structure. Herein, a single molecule assay is developed to examine the flexibility of the intact S2 relative to that of the myosin head.

View Article and Find Full Text PDF

High-throughput assays generate immense quantities of data that require sophisticated data analysis tools. We have created a freely available software tool, SLIMS (Small Laboratory Information Management System), for chemical genetics which facilitates the collection and analysis of large-scale chemical screening data. Compound structures, physical locations, and raw data can be loaded into SLIMS.

View Article and Find Full Text PDF

Most patients with the pediatric neurodegenerative disease spinal muscular atrophy have a homozygous deletion of the survival motor neuron 1 (SMN1) gene, but retain one or more copies of the closely related SMN2 gene. The SMN2 gene encodes the same protein (SMN) but produces it at a low efficiency compared with the SMN1 gene. We performed a high-throughput screen of approximately 47,000 compounds to identify those that increase production of an SMN2-luciferase reporter protein, but not an SMN1-luciferase reporter protein.

View Article and Find Full Text PDF

A powerful combination of molecular beacon and luminescence resonance energy transfer technology reveals alterations in nucleic acid structure by as little as a single nucleotide in a novel hybridization proximity assay. The assay measures the length of a single-stranded target when a terbium chelate-labeled molecular beacon hybridizes to one side of the nucleic acid segment to be measured and an acceptor probe carrying a convention fluorophore hybridizes to the opposite end of the target. Using a test sequence shortened incrementally by deleting single nucleotides, this assay reports a nearly linear relationship between sequence length and the distance separating acceptor and donor probes.

View Article and Find Full Text PDF

Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its N-terminal hypervariable region, but the functions of these isoforms are not completely understood. Here for the first time, we discovered that a chicken fast TnT isoform with a unique Tx motif (HEEAH)(n) binds calcium. The metal binding behavior of this TnT isoform was first investigated using terbium as a calcium analogue due to its more readily detectable fluorescence variation upon TnT binding.

View Article and Find Full Text PDF

Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to ensure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes systematic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply techniques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially random background.

View Article and Find Full Text PDF

We present a method for testing many biological mechanisms in cellular assays using an annotated library of 2036 small organic molecules. This annotated compound library represents a large-scale collection of compounds with diverse, experimentally confirmed biological mechanisms and effects. We found that this chemical library is (1) more structurally diverse than conventional, commercially available libraries, (2) enriched in active compounds in a tumor cell viability assay, and (3) capable of generating hypotheses regarding biological mechanisms underlying cellular processes.

View Article and Find Full Text PDF

We implement a strategy for aligning two protein-protein interaction networks that combines interaction topology and protein sequence similarity to identify conserved interaction pathways and complexes. Using this approach we show that the protein-protein interaction networks of two distantly related species, Saccharomyces cerevisiae and Helicobacter pylori, harbor a large complement of evolutionarily conserved pathways, and that a large number of pathways appears to have duplicated and specialized within yeast. Analysis of these findings reveals many well characterized interaction pathways as well as many unanticipated pathways, the significance of which is reinforced by their presence in the networks of both species.

View Article and Find Full Text PDF

The scientific standards of the Environmental Protection Agency (EPA) include the use of retrospective meta-analysis. This analysis entails a use of the theory of probability that is only a simulation and cannot accurately measure the confidence that should be placed in the results. The uncertainty necessary for probability is, in a retrospective study, simulated rather than real.

View Article and Find Full Text PDF

Magnetic, vibrational, and optical techniques are combined with density functional calculations to elucidate the electronic structure of the diamagnetic mononuclear side-on CuII-superoxo complex. The electronic nature of its lowest singlet/triplet states and the ground-state diamagnetism are explored. The triplet state is found to involve the interaction between the Cu xy and the superoxide pi v * orbitals, which are orthogonal to each other.

View Article and Find Full Text PDF

Actin and myosin interact in a cyclic series of steps linked to the hydrolysis of ATP that are representative of an ancient and widespread molecular mechanism. Spectroscopic findings are related to the analysis of the actin and myosin structures and results from kinetics, fibers, single molecules, electron microscopy, genetics, and a variety of other biophysical and biochemical studies on actin and myosin to provide an overview of the steps in this molecular process. The synthesis of the key findings from these fields reveals a highly efficient engine that amplifies subtle changes in the active site into unsurpassed molecular displacements.

View Article and Find Full Text PDF