Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.
View Article and Find Full Text PDFBiopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells.
View Article and Find Full Text PDFTofu wastewater can be utilized as a substrate for microorganisms that produce single-cell proteins (SCPs). Because different microorganisms have different cellular components, the composition of SCPs varies. Electro-stimulation has the potential to speed up fermentation and increase product yield.
View Article and Find Full Text PDFAntimicrobial composite edible film can be a solution for environmentally friendly food packaging, which can be made from fermented cheese whey containing an antimicrobial agent and cassava peel waste that contains starch. The research aims to determine the formulation of fermented cheese whey and cassava peel waste starch, resulting in an antimicrobial composite edible film with the best physical, mechanical, and water vapour permeability (WVP) properties, as well as with high antimicrobial activity. This research was conducted using experimental methods with nine composite edible film formulation treatments with three replications.
View Article and Find Full Text PDFPomegranate peels (PGPs) are known to have the potential as antibacterial not only from their nutrient content but also the microflora. The activities might be caused by the existence of indigenous yeast that can be utilized to inhibit the growth of pathogenic bacteria. This study aims to identify antibacterial and antioxidant activity of indigenous yeast isolated from PGP.
View Article and Find Full Text PDFPoultry meat consumption is increasing worldwide but the overuse of antimicrobials for prevention and treatment of diseases has increased antimicrobial resistance (AMR), triggering a major public health issue. To restrict AMR emergence, the government supports the optimization of natural products that are safe and easy to obtain with minimal side effects on poultry, humans, and the environment. Various studies have explored the potential of herbs in animal health for their antiviral, antibacterial, antifungal, antiparasitic, immunomodulatory, antioxidant, and body weight gain properties.
View Article and Find Full Text PDFYeast can be isolated from tofu wastewater and the cell wall in the form of β-glucan can act as a natural decontaminant agent. This study aimed to isolate and characterize native yeast from tofu wastewater, which can be extracted to obtain β-glucan and then identify the yeast and its β-glucan activity regarding antifungal ability against and aflatoxin-reducing activity towards aflatoxin B1 (AFB1) and B2 (AFB2). Tofu wastewater native yeast was molecularly identified, and the growth observed based on optical density for 96 h and the pH also measured.
View Article and Find Full Text PDFγ-aminobutyric acid (GABA) is synthesised by glutamic acid decarboxylase which catalyses the decarboxylation of L-glutamic acid. L-glutamic acid is formed by α-ketoglutarate in the TCA cycle by glutamic acid dehydrogenase (GDH). GABA is found in the human brain, plants, animals and microorganisms.
View Article and Find Full Text PDF