Regulatory T cells (Tregs) play a key role in suppressing systemic effector immune responses, thereby preventing autoimmune diseases but also potentially contributing to tumor progression. Thus, there is great interest in clinically manipulating Tregs, but the precise mechanisms governing in vitro-induced Treg (iTreg) differentiation are not yet fully understood. Here, we used multiparametric mass cytometry to phenotypically profile human iTregs during the early stages of in vitro differentiation at single-cell level.
View Article and Find Full Text PDFAims/hypothesis: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes.
Methods: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study.
Aims/hypothesis: Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of autoantibodies.
View Article and Find Full Text PDF