Epigenetic modifications play a crucial role in regulating gene expression patterns. Through epigenetic editing approaches, the chromatin structure is modified and the activity of the targeted gene can be reprogrammed without altering the DNA sequence. By using the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic repeats) platform with nuclease-deactivated dCas9 proteins to direct epigenetic effector domains (EDs) to genomic regulatory regions, the expression of the targeted gene can be modulated.
View Article and Find Full Text PDFBackground: Cystic Fibrosis (CF) is a genetic disease affecting multiple organs, primarily the lungs and digestive system. Improved pulmonary management significantly improved life expectancy of CF patients. As a result, extrapulmonary manifestations, including gastrointestinal and liver-related symptoms, have become more relevant.
View Article and Find Full Text PDFCancer survivors who received chemotherapy, such as the anthracycline doxorubicin (DOX), have an increased risk of developing complications later in life, including the development of chronic metabolic diseases. Although the etiology of this increased risk for late metabolic complications in cancer survivors is poorly understood, a causal role of therapy-induced senescent cells has been suggested. To study the role of cellular senescence in chemotherapy-induced metabolic complications, young adult female low-density lipoprotein receptor-deficient (Ldlr)-p16-3MR mice, in which p16-positive (p16) senescent cells can be genetically eliminated, were treated with four weekly injections of DOX (2.
View Article and Find Full Text PDFThe RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption.
View Article and Find Full Text PDFBackground & Aims: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model.
View Article and Find Full Text PDFβ-Catenin is a multifunctional protein that apart from its role in proliferative and differentiation events, also acts upon inflammatory processes, mainly interaction with nuclear factor-κB (NF-κB). However, there is still controversy as to whether β-catenin facilitates or represses NF-κB output. Insights into the molecular mechanisms underlying the interaction between β-catenin and NF-κB have highlighted the cofactors CREB-binding protein (CBP) and p300 as important candidates.
View Article and Find Full Text PDF