Neuromuscular disorders affect almost 20 million people worldwide. Advances in molecular diagnosis have provided valuable insights into neuromuscular disorders, allowing for improved standards of care and targeted therapeutic approaches. Despite this progress, access to genomic diagnosis remains scarce and inconsistent in middle-income countries such as Brazil.
View Article and Find Full Text PDFWe provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate.
View Article and Find Full Text PDFAccurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays.
View Article and Find Full Text PDFObjective: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies.
Methods: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents.
Background: Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals.
View Article and Find Full Text PDFAndersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features.
View Article and Find Full Text PDFHigh-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging.
View Article and Find Full Text PDFObjective: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel K 3.
View Article and Find Full Text PDFAndersen-Tawil syndrome (ATS) is a rare autosomal dominant neuromuscular disorder due to mutations in the KCNJ2 gene. The classical phenotype of ATS consists of a triad of periodic paralysis, cardiac conduction abnormalities and dysmorphic features. Episodes of either muscle weakness or cardiac arrhythmia may predominate however, and dysmorphic features may be subtle, masking the true breadth of the clinical presentation, and posing a diagnostic challenge.
View Article and Find Full Text PDFIntroduction: Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes have improved diagnostic accuracy and yield.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
November 2020
Amyotrophic lateral sclerosis (ALS) is an invariably fatal adult-onset neurodegenerative disorder; approximately 10% of ALS is monogenic but all ALS exhibits significant heritability. The skeletal muscle sodium channelopathies are a group of inherited, non-dystrophic ion channel disorders caused by heterozygous point mutations in the gene, leading to clinical manifestations of congenital myotonia, paramyotonia, and periodic paralysis syndromes. We provide clinical and genetic evidence of concurrence of these two rare disorders which implies a possible shared underlying pathophysiology in two patients.
View Article and Find Full Text PDFObjective: Hypokalaemic periodic paralysis (HypoPP) is caused by mutations of Ca1.1, and Na1.4 which result in an aberrant gating pore current.
View Article and Find Full Text PDFThe sarcolemmal voltage gated sodium channel Na1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions.
View Article and Find Full Text PDFVoltage-gated sodium (Na) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel Na1.
View Article and Find Full Text PDFgene mutations cause a number of neuromuscular phenotypes including myotonia. A subset of infants with myotonia-causing mutations experience severe life-threatening episodic laryngospasm with apnea. We have recently identified similar mutations in association with sudden infant death syndrome.
View Article and Find Full Text PDFAMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE).
View Article and Find Full Text PDFObjective: To identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, .
Methods: A combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and oocytes.
Results: Missense mutations of the same residue in the skeletal muscle sodium channel, R1460 of Na1.
Hypokalaemic periodic paralysis is a rare genetic neuromuscular disease characterized by episodes of skeletal muscle paralysis associated with low serum potassium. Muscle fibre inexcitability during attacks of paralysis is due to an aberrant depolarizing leak current through mutant voltage sensing domains of either the sarcolemmal voltage-gated calcium or sodium channel. We report a child with hypokalaemic periodic paralysis and CNS involvement, including seizures, but without mutations in the known periodic paralysis genes.
View Article and Find Full Text PDFDominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel Na1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by Na1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2018
Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs.
View Article and Find Full Text PDFBackground: Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.
View Article and Find Full Text PDFObjective: To characterize the clinical phenotype in patients with p.A1156T sodium channel mutation.
Methods: Twenty-nine Finnish patients identified with the c.
We describe two brothers with lower facial weakness, highly arched palate, scaphocephaly due to synostosis of the sagittal and metopic sutures, axial hypotonia, proximal muscle weakness, and mild scoliosis. The muscle MRI of the younger sibling revealed a selective pattern of atrophy of the gluteus maximus, adductor magnus and soleus muscles. Muscle biopsy of the younger sibling revealed myofibres with internalized nuclei, myofibrillar disarray, and "corona" fibres.
View Article and Find Full Text PDF