Xanthine (3,7-dihydro-purine-2,6-dione) is generated from guanine by guanine deaminase and hypoxanthine by xanthine oxidase (XOD). The determination of xanthine in meat indicates its freshness, while its level in serum/urine provides valuable information about diagnosis and medical management of certain metabolic disorders such as xanthinuria, hyperurecemia, gout and renal failure. Although chromatographic methods such a HPLC, capillary electrophoresis and mass spectrometry are available for quantification of xanthine in biological materials, these suffer from certain limitations such as complexity, time consuming sample preparation and requirement of expensive apparatus and trained persons to operate.
View Article and Find Full Text PDFA xanthine oxidase (XOD) from buttermilk was immobilized covalently onto boronic acid functionalized gold coated iron nanoparticles (Au@FeNPs) electrodeposited on pencil graphite (PG) electrode, via the boroester linkages, between free hydroxyl groups of boronic acid, α-COOH and -NH2 groups of enzyme. The surface functionalization of Fe/Au nanoparticles with boronic acid (Au@FeNPs) on pencil graphite (PG) electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The biosensor exhibited optimum response within 3s at pH 7.
View Article and Find Full Text PDFCommercial enzymes, creatininase (CA) from Pseudomonas sp, creatinase (CI) from Pseudomonas sp, sarcosine oxidase (SO) from Bacillus sp were co-immobilized onto iron oxide nanoparticles/chitosan-graft-polyaniline (Fe(3)O(4)-NPs/CHIT-g-PANI) composite film electrodeposited on surface of Pt electrode through glutaraldehyde coupling. Transmission electron microscopy (TEM) was used for characterization of Fe(3)O(4)-NPs. A creatinine biosensor was fabricated using Enzymes/Fe(3)O(4)-NPs/CHIT-g-PANI/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode.
View Article and Find Full Text PDFXanthine oxidase (XOD) was immobilized on a composite film of zinc oxide nanoparticle/chitosan/carboxylated multiwalled carbon nanotube/polyaniline (ZnO-NP/CHIT/c-MWCNT/PANI) electrodeposited over the surface of a platinum (Pt) electrode. A xanthine biosensor was fabricated using XOD/ZnO-NP/CHIT/c-MWCNT/PANI/Pt as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through a potentiostat. The ZnO-NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and the enzyme electrode was characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFA new zinc oxide nanoparticles/chitosan/carboxylated multiwall carbonnanotube/polyaniline (ZnO-NPs/CHIT/c-MWCNT/PANI) composite film has been synthesized on platinum (Pt) electrode using electrochemical techniques. Three enzymes, creatinine amidohydrolase (CA), creatine amidinohydrolase (CI) and sarcosine oxidase (SO) were immobilized on ZnO-NPs/CHIT/c-MWCNT/PANI/Pt electrode to construct the creatinine biosensor. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO-NPs) were synthesized from zinc nitrate by simple and efficient method in aqueous media at 55°C without any requirement of calcinations step. A mixture of ZnO-NPs and pyrrole was eletropolymerized on Pt electrode to form a ZnO-NPs-polypyrrole (PPy) composite film. Xanthine oxidase (XOD) was immobilized onto this nanocomposite film through physiosorption.
View Article and Find Full Text PDFA highly sensitive, specific and rapid electrochemical oxalate biosensor was constructed by covalently immobilizing sorghum leaf oxalate oxidase on carboxylated multiwalled carbon nanotubes and conducting polymer, polyaniline nanocomposite film electrodeposited over the surface of platinum (Pt) wire using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry. The optimized oxalate biosensor showed linear response range of 8.
View Article and Find Full Text PDF