Publications by authors named "Roohollah Bagherzadeh"

A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing complex geometries by an additive manufacturing approach.

View Article and Find Full Text PDF

Gas sensors based on nanostructured semiconductor metal oxide (SMO) materials have been extensively investigated as key components due to their advantages over other materials, namely, high sensitivity, stability, affordability, rapid response and simplicity. However, the difficulty of working at high temperatures, response in lower concentration and their selectivity are huge challenges of SMO materials for detecting gases. Therefore, researchers have not stopped their quest to develop new gas sensors based on SMOs with higher performance.

View Article and Find Full Text PDF

In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated.

View Article and Find Full Text PDF

Piezoelectric nanogenerators (PENGs) have attracted great interest owing to their broad range application in environmental mechanical energy harvesting to power small electronic devices. In this study, novel flexible and high-performance double-layer sandwich-type PENGs based on one-dimensional (1-D) and two-dimensional (2-D) zinc oxide (ZnO) nanostructures and Ni foam as the middle layer have been developed. The morphology and structure of 1- and 2-D ZnO nanostructures have been studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Over the past few decades, flexible piezoelectric devices have gained increasing interest due to their wide applications as wearable sensors and energy harvesters. Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), as one of piezoelectric polymers, has caught considerable attention because of its high flexibility, high thermal stability, and biocompatibility. However, its relatively lower piezoelectricity limits its broader applications.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) is a favorite polymer with excellent piezoelectric properties due to its mechanical and thermal stability. This article provides an overview of recent developments in the modification of PVDF fibrous structures and prospects for its application with a major focus on energy harvesting devices, sensors and actuator materials, and other types of biomedical engineering and devices. Many sources of energy harvesting are available in the environment, including waste-heated mechanical, wind, and solar energy.

View Article and Find Full Text PDF

This study aimed to optimize modification of cotton-polyester textiles of workwear in terms of air permeability (AP), bending stiffness (BS) and near-infrared (NIR) reflectance using nanometal-embedded polymethyl methacrylate (PMMA) polymer by a spray method. This experimental study was carried out to modify cotton-polyester textiles using nanoparticles of aluminum oxide (AlO), tin oxide (SnO) and zinc oxide (ZnO) embedded in PMMA polymer with different weight percentages by a spray method under 215-psi pressure. The surface temperature of the textiles induced by the NIR spectrum and their comfort in terms of AP and BS were measured according to Standard No.

View Article and Find Full Text PDF

Ceramic doped-polymer structures as organic and inorganic hybrid structures constitute a new area of advanced materials for flexible and stretchable sensors and actuators. Here, uniform ceramic-polymer composites of tetragonal BaTiO and polyvinylidene fluoride (PVDF) were prepared using solution casting to improve the pressure sensitivity. By introducing Ba-TiO nanoparticles to PVDF nanofibers, piezoelectricity and pressure sensitivity of hybrid nanofiber mats were significantly improved.

View Article and Find Full Text PDF

Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against inflammation and microbial aggression. In this study, we investigated the potential of nanocomposites of poly(vinylidene fluoride--trifluoroethylene) [P(VDF-TrFE)] incorporating zinc oxide (ZnO), in the form of electrospun fiber meshes for lung tissue engineering. We focused on their anti-inflammatory, antimicrobial, and mechanoelectrical character according to different fiber mesh textures (i.

View Article and Find Full Text PDF

This study aimed to develop a novel hybrid piezoelectric structure based on poly(vinylidene difluoride) nanofibers (PVDF NFs) and zinc oxide nanorods (ZnO NRs) which eliminate the need for post poling treatment in such hybrid structures. Mechanism of electrical performance enhancement of the hybrid structure is also discussed in this paper. To study the effect of hybridization on piezoelectric performance, pristine ZnO NRs and pristine PVDF NF nanogenerators were also fabricated.

View Article and Find Full Text PDF

Using cell-based engineered skin is an emerging strategy for treating difficult-to-heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue-derived mesenchymal stem cells (AD-MSCs) and keratinocytes on gelatin/chitosan/β-glycerol phosphate (GCGP) nanoscaffold in full-thickness excisional skin wound healing of rats.

View Article and Find Full Text PDF

Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed.

View Article and Find Full Text PDF

In this article the pore structure and porosity parameters of polycaprolactone (PCL) nano-microfibrous scaffolds are investigated using a predicting theoretical model and a nondestructive evaluation approach based on confocal laser scanning microscopy (CLSM) and three-dimensional image analysis. Different fibrous scaffolds with different fiber diameters produced by electrospinning process and their 3D-pore structure were evaluated theoretically and also compared to results of CLSM and capillary flow porometery methods. The effect of polymer concentration on the pore structure of scaffolds was also investigated.

View Article and Find Full Text PDF

Electrospinning process can fabricate nanomaterials with unique nanostructures for potential biomedical and environmental applications. However, the prediction and, consequently, the control of the porous structure of these materials has been impractical due to the complexity of the electrospinning process. In this research, a theoretical model for characterizing the porous structure of the electrospun nanofibrous network has been developed by combining the stochastic and stereological probability approaches.

View Article and Find Full Text PDF

Specific internal pore architectures are required to provide the needed biological and biophysical functions for fibrous scaffolds as these architectures are critical to cell infiltration and in-grows performance. However, the key challenging on evaluating 3D pore structure of fibrous scaffolds for better understanding the capability of different structures for biological application is not well investigated. This article reports a fast, accurate, nondestructive, and comprehensive evaluation approach based on confocal laser scanning microscopy (CLSM) and three-dimensional image analysis to study the pore structure and porosity parameters of Nano/Microfibrous scaffolds.

View Article and Find Full Text PDF