A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties.
View Article and Find Full Text PDFFluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays.
View Article and Find Full Text PDFSignal transduction pathways, which control the response of cells to various environmental signals, are mediated by the function of signaling proteins that interact with each other and activate one other with high specificity. Synthetic agents that mimic the function of these proteins might therefore be used to generate unnatural signal transduction steps and consequently, alter the cell's function. We present guidelines for designing 'chemical transducers' that can induce artificial communication between native proteins.
View Article and Find Full Text PDFAim: Pancreatic lipase (triacylglycerol lipase EC 3.1.1.
View Article and Find Full Text PDFThe design and function of a synthetic "chemical transducer" that can generate an unnatural communication channel between two proteins is described. Specifically, we show how this transducer enables platelet-derived growth factor to trigger (in vitro) the catalytic activity of glutathione-s-transferase (GST), which is not its natural enzyme partner. GST activity can be further controlled by adding specific oligonucleotides that switch the enzymatic reaction on and off.
View Article and Find Full Text PDF