We demonstrate the construction of 7 Tesla and 12 Tesla all high-temperature-superconducting (HTS) magnets, small enough to fit on your wrist. The size of the magnet reduces the cost of fabrication, decreases the fringe field to permit facile siting of magnets, and decreases the stored energy of high field magnets. These small HTS-based magnets are being developed for gyrotron microwave sources for use in high-field nuclear magnetic resonance applications.
View Article and Find Full Text PDFSpherical rotors in magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments have potential advantages relative to cylindrical rotors in terms of ease of fabrication, low risk of rotor crash, easy sample exchange, and better microwave access. However, one major disadvantage so far of spherical rotors is poor NMR filling factor due to the small sample volume and large cylindrical radiofrequency (RF) coil. Here we present a novel NMR coil geometry in the form of a spherical coil.
View Article and Find Full Text PDF