Publications by authors named "Ronning F"

The thermal conductivity of heavy-fermion superconductor CeCoIn_{5} was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the antinodal direction, J|| [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle Θ≈12°, measured from the heat current direction [100]. This resonance corresponds to the reported resonance at an angle Θ^{'}≈33° from the direction of the heat current applied along the nodal direction, J||[110].

View Article and Find Full Text PDF

Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics and as a means of revealing or even inducing broken symmetries. Emerging methods for light-based current control offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science.

View Article and Find Full Text PDF
Article Synopsis
  • Electrons at the borders of localization lead to unique states of matter in strongly correlated electron materials, like heavy electron metals, which showcase interesting magnetic behaviors.
  • These phenomena arise from the interplay between localized and itinerant electrons, giving rise to novel states such as unconventional superconductivity and topological states of matter.
  • The researchers simplified the complex Kondo lattice model for the antiferromagnet CeIn by integrating bandstructure calculations with a multi-orbital model, successfully validating their findings through neutron spectroscopy, thus enhancing our understanding of metallic quantum states.
View Article and Find Full Text PDF

Odd-parity superconductor UTe_{2} shows spontaneous time-reversal symmetry breaking and multiple superconducting phases, which imply chiral superconductivity, but only in a subset of samples. Here we microscopically observe a homogeneous superfluid density n_{s} on the surface of UTe_{2} and an enhanced superconducting transition temperature near the edges. We also detect vortex-antivortex pairs even at zero magnetic field, indicating the existence of a hidden internal field.

View Article and Find Full Text PDF

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative.

View Article and Find Full Text PDF
Article Synopsis
  • Topological semimetals like TaAs present challenges for experimental interpretation due to the presence of multiple Weyl points and trivial Fermi surfaces.
  • Magneto-infrared reflection spectroscopy measurements on TaAs show distinct transitions from a single Weyl Fermion pocket at low magnetic fields (0.4 tesla).
  • The study identifies the W2 Weyl point at 8.3 meV below the Fermi energy and establishes a low quantum limit, enabling the investigation of unique quantum effects in Weyl semimetals.
View Article and Find Full Text PDF

The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T-temperature correction to the oscillation frequency that is absent for parabolic dispersions.

View Article and Find Full Text PDF

The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCoRuAl, reaching 23 microvolts per kelvin.

View Article and Find Full Text PDF

UTe is a recently discovered unconventional superconductor that has attracted much interest because of its potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe under applied pressure reveals key insights on the superconducting and magnetic states surrounding pressure-induced quantum criticality at = 1.3 GPa.

View Article and Find Full Text PDF

CeRhIn provides a textbook example of quantum criticality in a heavy fermion system: Pressure suppresses local-moment antiferromagnetic (AFM) order and induces superconductivity in a dome around the associated quantum critical point (QCP) near p ≈ 23 kbar. Strong magnetic fields also suppress the AFM order at a field-induced QCP at B ≈ 50 T. In its vicinity, a nematic phase at B ≈ 28 T characterized by a large in-plane resistivity anisotropy emerges.

View Article and Find Full Text PDF

The d-wave superconductor CeCoIn_{5} has been proposed as a strong candidate for supporting the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state near the low-temperature boundary of its upper critical field. Neutron diffraction, however, finds spin-density-wave (SDW) order in this part of the phase diagram for field in the a-b plane, and evidence for the SDW disappears as the applied field is rotated toward the tetragonal c axis. It is important to understand the interplay between the SDW and a possible FFLO state in CeCoIn_{5}, as the mere existence of an SDW does not necessarily exclude an FFLO state.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Kondo insulators are expected to transform into metals under a sufficiently strong magnetic field. The closure of the insulating gap stems from the coupling of a magnetic field to the electron spin, yet the required strength of the magnetic field-typically of order 100 T-means that very little is known about this insulator-metal transition. Here we show that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text], owing to its fortuitously small gap, provides an ideal Kondo insulator for this investigation.

View Article and Find Full Text PDF

Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain.

View Article and Find Full Text PDF

SmB_{6} is a candidate topological Kondo insulator that displays surface conduction at low temperatures. Here, we perform torque magnetization measurements as a means to detect de Haas-van Alphen (dHvA) oscillations in SmB_{6} crystals grown by aluminum flux. We find that dHvA oscillations occur in single crystals containing embedded aluminum, originating from the flux used to synthesize SmB_{6}.

View Article and Find Full Text PDF

High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn_{5} at H^{*}≳30  T for fields ≃20° off the c axis. Here we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution dilatometry. At low fields, a finite magnetic field component in the tetragonal ab plane explicitly breaks the tetragonal (C_{4}) symmetry of the lattice revealing a finite nematic susceptibility.

View Article and Find Full Text PDF

We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range.

View Article and Find Full Text PDF

CeCo(In_{0.990}Hg_{0.010})_{5} is a charge doped variant of the d-wave CoCoIn_{5} superconductor with coexistent antiferromagnetic and superconducting transitions occurring at T_{N}=3.

View Article and Find Full Text PDF

Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied.

View Article and Find Full Text PDF

Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductor CeCoIn_{5} and antiferromagnetic (AFM) metal CeRhIn_{5}, in which the AFM order can be suppressed by applying pressure.

View Article and Find Full Text PDF

Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide NbPdS possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G.

View Article and Find Full Text PDF

Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems.

View Article and Find Full Text PDF

By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed.

View Article and Find Full Text PDF

The thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn_{5}, with the heat current J along the nodal [110] direction of its d_{x^{2}-y^{2}} order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to the heat current.

View Article and Find Full Text PDF