Background: Cold agglutinin disease (CAD) is a rare subtype of autoimmune haemolytic anaemia characterised by classical complement pathway-mediated haemolysis, fatigue, and poor quality of life (QoL). Sutimlimab, a C1s inhibitor, rapidly halted haemolysis, and improved patient-reported outcomes (PROs) in patients with CAD in two phase 3 trials (CARDINAL and CADENZA). Here we report PROs from the CADENZA open-label extension (Part B).
View Article and Find Full Text PDFCold agglutinin disease (CAD) is a rare form of autoimmune hemolytic anemia with a substantial burden on patient's quality of life. CARDINAL was a 2-part, open-label, single-arm, multicenter phase 3 study evaluating the C1s inhibitor, sutimlimab, for treatment of CAD. Part A consisted of the pivotal study phase, with the part B extension phase assessing long-term safety and durability of response including patient-reported outcomes, which is the focus of this report.
View Article and Find Full Text PDFCold agglutinin disease (CAD) is a rare, autoimmune, classical complement pathway (CP)-mediated hemolytic anemia. Sutimlimab selectively inhibits C1s of the C1 complex, preventing CP activation while leaving the alternative and lectin pathways intact. In Part A (26 weeks) of the open-label, single-arm, Phase 3 CARDINAL study in patients with CAD and a recent history of transfusion, sutimlimab demonstrated rapid effects on hemolysis and anemia.
View Article and Find Full Text PDFPostnatal mammary gland development and differentiation occur during puberty and pregnancy. To explore the role of DNA methylation in these processes, we determined the genome-wide DNA methylation and gene expression profiles of CD24(+)CD61(+)CD29(hi), CD24(+)CD61(+)CD29(lo), and CD24(+)CD61(-)CD29(lo) cell populations that were previously associated with distinct biological properties at different ages and reproductive stages. We found that pregnancy had the most significant effects on CD24(+)CD61(+)CD29(hi) and CD24(+)CD61(+)CD29(lo) cells, inducing distinct epigenetic states that were maintained through life.
View Article and Find Full Text PDFThe molecular and structural basis of anesthetic interactions with conformations and functionalities of cell surface receptors remains to be elucidated. We have demonstrated that the widely used volatile anesthetic isoflurane blocks the activation-dependent conformational conversion of integrin lymphocyte function associated antigen-1 (LFA-1), the major leukocyte cell adhesion molecule, to a high-affinity configuration. Perturbation of LFA-1 activation by isoflurane at clinically relevant concentrations leads to the inhibition of T-cell interactions with target cells as well as ligand-triggered intracellular signaling.
View Article and Find Full Text PDF