We review the convergence of chaotic integrals computed by Monte Carlo simulation, the trace method, dynamical zeta function, and Fredholm determinant on a simple one-dimensional example: the parabola repeller. There is a dramatic difference in convergence between these approaches. The convergence of the Monte Carlo method follows an inverse power law, whereas the trace method and dynamical zeta function converge exponentially, and the Fredholm determinant converges faster than any exponential.
View Article and Find Full Text PDFBy viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.
View Article and Find Full Text PDFUsing cycle expansion for the thermodynamic zeta function, a formula is derived for the Lyapunov exponent of a product of random hyperbolic matrices chosen from a discrete set. This allows for an accurate numerical solution of the Ising model in one dimension with quenched disorder. The formula is compared with weak disorder expansions and with the microcanonical approximation and shown to apply to matrices with degenerate eigenvalues.
View Article and Find Full Text PDF