Publications by authors named "Ronn Goei"

Article Synopsis
  • Far infrared radiation (FIR) between 4-14 μm can benefit human health by improving blood flow, leading to the development of health-promoting textiles using FIR-emitting additives in polymer fabrics.
  • The study focused on biochar from candlenuts combined with activated carbon in polypropylene films, finding that its inclusion increased FIR emissivity and enhanced UV/NIR blocking capabilities.
  • Biochar significantly improved temperature retention and tensile strength of the fibers, suggesting its potential for use in warming clothing and longer-lasting materials compared to other common additives.
View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) is a common complication of diabetes mellitus which can cause infection, amputation and even death. One of many treatments that can be applied to support the DFU healing processes is by using wound dressings. Bacterial cellulose (BC) is a good material to be used as a wound dressing.

View Article and Find Full Text PDF

To realize sound disposal of hyperaccumulator harvested from phytoremediation, hydrothermal carbonization (HTC) has been employed to obtain superior hydrochar adsorbents for removal of phosphate and ammonium from water body. A series of hydrochars have been prepared under tuned HTC conditions to tailor hydrochar with desired properties. Generally, increased temperature and prolonged reaction time facilitated acidic oxygen functional groups on hydrochars, thereby improving adsorption capacity of hydrochar.

View Article and Find Full Text PDF

This study reports on successful synthesis of carbon dots (CDs), nitrogen-doped zinc oxide (N-ZnO), and N-ZnO/CD nanocomposites as photocatalysts for degradation of methylene blue. The first part was the synthesis of CDs utilizing a precursor from soybean and ethylenediamine as a dopant by a hydrothermal method. The second part was the synthesis of N-ZnO with urea as the nitrogen dopant carried out by a calcination method in a furnace at 500 °C for 2 h in an N atmosphere (5 C min).

View Article and Find Full Text PDF

The electrospinning of acetylated lignin/polyvinyl alcohol (PVA) nanofibres was carried out to expand the application of lignin materials obtained from oil palm empty fruit bunches (OPEFB). Lignin was isolated by the steam explosion method and subsequently precipitated using HSO. Acetylated lignin was produced by mixing acetic anhydride and pyridine at a 2:1 v/v ratio.

View Article and Find Full Text PDF

Polymer foam that provides good support with high energy return (low energy loss) is desirable for sport footwear to improve running performance. Ethylene-vinyl acetate copolymer (EVA) foam is commonly used in the midsole of running shoes. However, EVA foam exhibits low mechanical properties.

View Article and Find Full Text PDF

The current synthesis methods of high-entropy alloy (HEA) thin-film coatings face huge challenges in facile preparation, precise thickness control, conformal integration, and affordability. These challenges are more specific and noteworthy for noble metal-based HEA thin films where the conventional sputtering methods encounter thickness control and high-cost issues (high-purity noble metal targets required). Herein, for the first time, we report a facile and controllable synthesis process of quinary HEA coatings consisting of noble metals (Rh, Ru, Pt, Pd, and Ir), by sequential atomic layer deposition (ALD) coupled with electrical Joule heating for post-alloying.

View Article and Find Full Text PDF

In this article, we present the performance of Copper (Cu)/Graphene Nano Sheets (GNS) and C-π (Graphite, GNS, and Nitrogen-doped Graphene Nano Sheets (N-GNS)) as a new battery electrode prototype. The objectives of this research are to develop a number of prototypes of the battery electrode, namely Cu/GNS//Electrolyte//C-π, and to evaluate their respective performances. The GNS, N-GNS, and primary battery electrode prototypes (Cu/GNS/Electrolyte/C-π) were synthesized by using a modified Hummers method; the N-doped sheet was obtained by doping nitrogen at room temperature and the impregnation or the composite techniques, respectively.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Edison Huixiang Ang at the National Institute of Education, an institute of Nanyang Technological University, Singapore. The image depicts the sustainable fabrication of two-dimensional MXene sheets from the upcycling of fruit waste for solar desalination. Read the full text of the article at 10.

View Article and Find Full Text PDF

Freshwater production using solar-driven interfacial evaporation is regarded as a green and sustainable strategy. The biggest barrier to practical deployment of solar desalination, however, continues to be the lack of options for renewable materials. Herein, we present a facile two-step carbonization approach that is sustainable for developing innovative two-dimensional (2D) molybdenum carbide (Mo C) materials derived from carbonized fruit wastes.

View Article and Find Full Text PDF

Rhodium (Rh) and palladium (Pd) thin films have been fabricated using an atomic layer deposition (ALD) process using Rh(acac) and Pd(hfac) as the respective precursors and using short-pulse low-concentration ozone as the co-reactant. This method of fabrication does away with the need for combustible reactants such as hydrogen or oxygen, either as a precursor or as an annealing agent. All previous studies using only ozone could not yield metallic films, and required post treatment using hydrogen or oxygen.

View Article and Find Full Text PDF

Metal alloys are usually fabricated by melting constituent metals together or sintering metal alloy particles made by high energy ball milling (mechanical alloying). All these methods only allow for bulk alloys to be formed. This manuscript details a new method of fabricating Rhodium-Iridium (Rh-Ir) metal alloy films using atomic layer deposition (ALD) and rapid Joule heating induced alloying that gives functional thin film alloys, enabling conformal thin films with high aspect ratios on 3D nanostructured substrate.

View Article and Find Full Text PDF

The fabrication of Nd-Nb co-doped SnO/α-WO electrochromic (EC) materials for smart window applications is presented in the present paper. Nb is a good dopant candidate for ECs owing to its ability to introduce active sites on the surface of α-WO without causing much lattice strain due to the similar ionic radius of Nb and W. These active sites introduce more channels for charge insertion or removal during redox reactions, improving the overall EC performance.

View Article and Find Full Text PDF

Membrane filtration is a promising technology for the separation of organic immiscible liquids. Surface topography has a direct impact on the wettability of membranes, and it remains largely unexplored. Here, we introduce on-demand liquid separation by coating porous graphene/metal-organic framework (MOF) composites with tunable wettability on porous substrates.

View Article and Find Full Text PDF

A facile one-step assembly method was developed for the preparation of metal-organics @BiO composites for photocatalysis. Two kinds of metal-organics (Ti-bdc and Cu-btc)@BiO composites were synthesized via the coordination of btc/bdc and metal ions (Ti/Cu) as well as OH on the surface of BiO. Compared with pure BiO Ti-bdc@BiO shows a 1.

View Article and Find Full Text PDF

A surface-active BiFeO nanoplates (BF-nP) was prepared using a facile hydrothermal protocol for sulfamethoxazole (SMX) removal via peroxymonosulfate (PMS). The catalytic activity of BF-nP was superior to other catalysts with the following order of performance: BF-nP>BiFeO (nanocubes)>>CoO>FeO (low temperature co-precipitation method)>FeO (hydrothermal method)∼BiO∼Bi∼Fe. The empirical relationship of the apparent rate constant (k), BF-nP loading and PMS dosage can be described as follows: k=0.

View Article and Find Full Text PDF

Pristine bismuth ferrite usually possesses weak magnetic properties (e.g., saturation magnetization Ms < 3 emu g(-1)) for practical magnetic separation applications.

View Article and Find Full Text PDF

Ag-decorated TiO2 (Ag-TiO2) photocatalytic membranes have been fabricated by using Pluronic P-123 as a pore-forming and structure-directing agent. Six different hierarchical architectures were obtained by multilayer coating of different Ag-TiO2 sols. The porous structure of the resulting layers could be fine-tuned by altering the amounts of P-123 and AgNO3 added during the preparation of TiO2 sols.

View Article and Find Full Text PDF