Histologically, bladder cancer is a heterogeneous group comprising urothelial carcinoma (UC), squamous cell carcinoma, adenocarcinomas (ACs), urachal carcinomas (UrCs), and small cell neuroendocrine carcinomas (SCCs). However, all bladder cancers have been treated so far uniformly, and targeted therapy options are still limited. Thus, we aimed to determine the protein expression/molecular status of commonly used cancer targets (programmed cell death 1 ligand 1 (PD-L1), mismatch repair (MMR), androgen and estrogen receptors (AR/ER), Nectin-4, tumor-associated calcium signal transducer 2 (Tacstd2, Trop-2), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and fibroblast growth factor receptor 3 (FGFR3)) to give first insights into whether patients with SCC, AC/UrCs, and squamous-differentiated carcinomas (Sq-BLCA) of the bladder could be eligible for targeted therapies.
View Article and Find Full Text PDFDysfunction of the SWI/SNF complex has been observed in various cancers including urothelial carcinomas. However, the clinical impact of the SWI/SNF complex in squamous-differentiated bladder cancers (sq-BLCA) remains unclear. Therefore, we aimed to analyze potential expression loss and genetic alterations of (putative) key components of the SWI/SNF complex considering the co-occurrence of genetic driver mutations and PD-L1 expression as indicators for therapeutic implications.
View Article and Find Full Text PDFPrimary glandular bladder tumours (bladder adenocarcinoma [BAC], urachal adenocarcinoma [UAC], urothelial carcinoma with glandular differentiation [UCg]) are rare malignancies with histological resemblance to colorectal adenocarcinoma (CORAD) in the majority of this subgroup. Definite case numbers are very low, molecular data are limited and the pathogenesis remains poorly understood. Therefore, this study was designed to complement current knowledge by in depth analysis of BAC (n = 12), UAC (n = 13), UCg (n = 11) and non-invasive glandular lesions (n = 19).
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICI) are an integral part of bladder cancer therapy, however, the relevance of ICI treatment for mixed and pure squamous cell carcinoma of the bladder remains poorly studied. Therefore, we analysed the expression of programmed death-ligand 1 (PD-L1) in urothelial carcinomas with squamous differentiation (UC/SCC) and pure squamous cell carcinoma (SCC) of the bladder and studied a UC/SCC patient with ICI therapy.
Methods: Tissue microarrays of 45 UC/SCC and 63 SCC samples were immunohistochemically stained with four anti-PD-L1 antibodies (28-8, 22C3, SP142 and SP263).