Tunneling light-emitting devices (LEDs) based on transition metal dichalcogenides (TMDs) and other two-dimensional (2D) materials are a new platform for on-chip optoelectronic integration. Some of the physical processes underlying this LED architecture are not fully understood, especially the emission at photon energies higher than the applied electrostatic potential, so-called overbias emission. Here we report overbias emission for potentials that are near half of the optical bandgap energy in TMD-based tunneling LEDs.
View Article and Find Full Text PDFOptical information processing using photonic integrated circuits is a key goal in the field of nanophotonics. Extensive research efforts have led to remarkable progress in integrating active and passive device functionalities within one single photonic circuit. Still, to date, one of the central components, i.
View Article and Find Full Text PDFVan der Waals heterostructures assembled from two-dimensional materials offer a promising platform to engineer structures with desired optoelectronic characteristics. Here we use waveguide-coupled disk resonators made of hexagonal boron nitride (h-BN) to demonstrate cavity-coupled emission from interlayer excitons of a heterobilayer of two monolayer transition metal dichalcogenides. We sandwich a MoSe-WSe heterobilayer between two slabs of h-BN and directly pattern the resulting stack into waveguide-coupled disk resonators.
View Article and Find Full Text PDF