J Cardiovasc Electrophysiol
September 2013
Background: Sinus node (SN) dysfunction is observed in some long-QT syndrome (LQTS) patients, but has not been studied as a function of LQTS genotype. LQTS6 involves mutations in the hERG β-subunit MiRP1, which also interacts with hyperpolarization-activated, cyclic nucleotide gated (HCN) channels-the molecular correlate of SN pacemaker current (If ). An LQTS registry search identified a 55-year male with M54T MiRP1 mutation, history of sinus bradycardia (39-56 bpm), and prolonged QTc.
View Article and Find Full Text PDFPLoS Comput Biol
December 2010
The sinoatrial node (SAN) is a complex structure that exhibits anatomical and functional heterogeneity which may depend on: 1) The existence of distinct cell populations, 2) electrotonic influences of the surrounding atrium, 3) the presence of a high density of fibroblasts, and 4) atrial cells intermingled within the SAN. Our goal was to utilize a computer model to predict critical determinants and modulators of excitation and conduction in the SAN. We built a theoretical "non-uniform" model composed of distinct central and peripheral SAN cells and a "uniform" model containing only central cells connected to the atrium.
View Article and Find Full Text PDFIn rabbit, sodium current (I(Na)) contributes to newborn sinoatrial node (SAN) automaticity but is absent in adult SAN, where heart rate is slower. In contrast, heart rate is high and I(Na) is functional in adult mouse SAN. Given the slower heart rates of large mammals, we asked if I(Na) is functionally active in SAN of newborn or adult canine heart.
View Article and Find Full Text PDFThe pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels.
View Article and Find Full Text PDFBackground: Female sex is an independent risk factor for torsade de pointes in long-QT syndrome. In women, QT interval and torsade de pointes risk fluctuate dynamically during the menstrual cycle and pregnancy. Accumulating clinical evidence suggests a role for progesterone; however, the effect of progesterone on cardiac repolarization remains undetermined.
View Article and Find Full Text PDF