Learning classification tasks of [Formula: see text] inputs typically consist of [Formula: see text]) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly enhance accuracies. In particular, average accuracies of the advanced-VGG with [Formula: see text] layers (A-VGGm) architectures are 0.
View Article and Find Full Text PDFThe realization of complex classification tasks requires training of deep learning (DL) architectures consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is far from the reality of the human brain. According to the DL rationale, the first convolutional layer reveals localized patterns in the input and large-scale patterns in the following layers, until it reliably characterizes a class of inputs. Here, we demonstrate that with a fixed ratio between the depths of the first and second convolutional layers, the error rates of the generalized shallow LeNet architecture, consisting of only five layers, decay as a power law with the number of filters in the first convolutional layer.
View Article and Find Full Text PDF