Publications by authors named "Ronit Azriel-Rosenfeld"

The tumor suppressor gene p53 is mutated in more than half of human tumors. One important characteristic of p53 mutants is their accumulation in the nucleus of cancer cells. Thus, reactivation of mutant p53 proteins may trigger massive apoptosis in tumor cells.

View Article and Find Full Text PDF

Conventional treatment of recurrent and metastasized prostate cancer (CaP) remains inadequate; this fact mandates development of alternative therapeutic modalities, such as specific active or passive immunotherapy. Previously, we reported the identification of a novel highly immunogenic HLA-A*0201-restricted Prostatic Acid Phosphatase-derived peptide (PAP-3) by a two-step in vivo screening in an HLA-transgenic (HHD) mouse system. In the present study we aimed at elucidating the efficiency of PAP-3-based vaccine upon active antitumor immunization.

View Article and Find Full Text PDF

Non-DNA microarrays, such as protein, peptide and small molecule microarrays, can potentially revolutionize the high-throughput screening tools currently used in basic and pharmaceutical research. However, fundamental obstacles remain that limit their rapid and widespread implementation as an alternative bioanalytical approach. These include the prerequisite for numerous proteins in active and purified form, ineffectual immobilization strategies and inadequate means for quality control of the considerable numbers of multiple reagents.

View Article and Find Full Text PDF

We describe a novel approach for high-throughput screening of recombinant antibodies, based on their immobilization on solid cellulose-based supports. We constructed a large human synthetic single-chain Fv antibody library where in vivo formed complementarity determining regions were shuffled combinatorially onto germline-derived human variable-region frameworks. The arraying of library-derived scFvs was facilitated by our unique display/expression system, where scFvs are expressed as fusion proteins with a cellulose-binding domain (CBD).

View Article and Find Full Text PDF