Mobilization of clusters of genes called genomic islands (GIs) across bacterial lineages facilitates dissemination of traits, such as, resistance against antibiotics, virulence or hypervirulence, and versatile metabolic capabilities. Robust delineation of GIs is critical to understanding bacterial evolution that has a vast impact on different life forms. Methods for identification of GIs exploit different evolutionary features or signals encoded within the genomes of bacteria, however, the current state-of-the-art in GI detection still leaves much to be desired.
View Article and Find Full Text PDFWe present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in PAO1.
View Article and Find Full Text PDFSARS-CoV-2 is the causative agent of COVID-19 that has infected over 642 million and killed over 6.6 million people around the globe. Underlying a wide range of clinical manifestations of this disease, from moderate to extremely severe systemic conditions, could be genes or pathways differentially expressing in the hosts.
View Article and Find Full Text PDFIdentifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High-throughput technologies for assessment and quantification of genome-wide gene expression patterns have enabled systems-level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information-rich RNA-Seq datasets of the model plant to construct a gene co-expression network, which was partitioned into clusters or modules that harbor genes correlated by expression.
View Article and Find Full Text PDFThe zebrafish is an excellent model system to study thrombocyte function and development. Due to the difficulties in separating young and mature thrombocytes, comparative transcriptomics between these two cell types has not been performed. It is important to study these differences in order to understand the mechanism of thrombocyte maturation.
View Article and Find Full Text PDF