Publications by authors named "Ronik Khachatoorian"

Zika virus (ZIKV) has become a public health concern worldwide due to its association with congenital abnormalities and neurological diseases. To date, no effective vaccines or antiviral drugs have been approved for the treatment of ZIKV infection, and new inexpensive therapeutic options are urgently needed. In this study, we have used an in vitro plaque assay to assess an antiviral activity of the second generation of anti-ZIKV compounds, based on 1,3-disubstituted (thio)urea scaffold.

View Article and Find Full Text PDF

Zika virus (ZIKV) has been identified as a cause of neurologic diseases in infants and Guillain-Barré Syndrome, and currently, no therapeutics or vaccines are approved. In this study, we sought to identify potential host proteins interacting with ZIKV particles to gain better insights into viral infectivity. Viral particles were purified through density-gradient centrifugation and subsequently, size-exclusion chromatography (SEC).

View Article and Find Full Text PDF

Patients with chronic hepatitis C virus (HCV) infection risk complications of cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Previously, our proteomic examination of hepatocytes carrying a HCV-replicon revealed that deregulation of cytoskeletal dynamics may be a potential mechanism of viral-induced HCC growth. Here, we demonstrate the effect of HCV replication on the microtubule regulator stathmin (STMN1) in HCC cells.

View Article and Find Full Text PDF

The recent re-emergence of Zika virus (ZIKV), a member of the Flaviviridae family, has become a global emergency and a serious public health threat worldwide. ZIKV infection causes severe neuroimmunopathology and is particularly harmful to the developing fetuses of infected pregnant women causing various developmental abnormalities. Currently, there are no effective methods of preventing or treating ZIKV infection, and new treatment options are urgently needed.

View Article and Find Full Text PDF

The human molecular chaperones heat shock protein 70 (Hsp70) and heat shock cognate protein 70 (Hsc70) bind to the hepatitis C viral nonstructural protein 5A (NS5A) and regulate its activity. Specifically, Hsp70 is involved in NS5A-augmented internal ribosomal entry site (IRES)-mediated translation of the viral genome, whilst Hsc70 appears to be primarily important for intracellular infectious virion assembly. To better understand the importance of these two chaperones in the viral life cycle, infected human cells were treated with allosteric Hsp70/Hsc70 inhibitors (AHIs).

View Article and Find Full Text PDF

The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide.

View Article and Find Full Text PDF

We previously identified the NS5A/HSP70 binding site to be a hairpin moiety at C-terminus of NS5A domain I and showed a corresponding cyclized polyarginine-tagged synthetic peptide (HCV4) significantly blocks virus production. Here, sequence comparison confirmed five residues to be conserved. Based on NS5A domain I crystal structure, Phe171, Val173, and Tyr178 were predicted to form the binding interface.

View Article and Find Full Text PDF

We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels.

View Article and Find Full Text PDF

Prior studies showed that Toll-like receptor (TLR) signaling pathway genes were upregulated in the liver of rats fed ethanol, but not in rats fed ethanol plus S-adenosylmethionine (SAMe). These results were obtained using a PCR microplate array analysis for TLRs and associated proteins such as proinflammatory cytokines and chemokine mRNA levels. A large number of genes were upregulated by the ethanol diet, but not the ethanol plus SAMe diet.

View Article and Find Full Text PDF

We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity.

View Article and Find Full Text PDF

Unlabelled: NS5A is a key regulator of the hepatitis C virus (HCV) life cycle including RNA replication, assembly, and translation. We and others have shown that NS5A augments HCV internal ribosomal entry site (IRES)-mediated translation. Furthermore, Quercetin treatment and heat shock protein (HSP) 70 knockdown inhibit the NS5A-driven augmentation of IRES-mediated translation and infectious virus production.

View Article and Find Full Text PDF

We describe a simple method of isolating plasmid DNA directly from Escherichia coli culture medium by addition of lithium acetate and Sodium dodecyl sulphate, followed by centrifugation and alcohol precipitation. The plasmid is sufficiently pure that it can be used in many enzyme-based reactions, including DNA sequencing and restriction analysis. Chromosomal DNA contamination is significantly reduced by pretreatment of the culture with DNase I, suggesting that much of the contaminant is associated with permeable dead cells.

View Article and Find Full Text PDF