Nanonization of poorly water-soluble drugs has shown great potential in improving their oral bioavailability by increasing drug dissolution rate and adhesion to the gastrointestinal mucus. However, the fundamental features that govern the particle-mucus interactions have not been investigated in a systematic way before. In this work, we synthesize mucin hydrogels that mimic those of freshly excised porcine mucin.
View Article and Find Full Text PDFNanoprecipitation is one of the most versatile methods to produce pure drug nanoparticles (PDNPs) owing to the ability to optimize the properties of the product. Nevertheless, nanoprecipitation may result in broad particle size distribution, low physical stability, and batch-to-batch variability. Microfluidics has emerged as a powerful tool to produce PDNPs in a simple, reproducible, and cost-effective manner with excellent control over the nanoparticle size.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have emerged as a promising strategy to promote tissue regeneration. However, overcoming the low EV production yield remains a big challenge in translating EV-based therapies to the clinical practice. Current EV production relies heavily on 2D cell culture, which is not only less physiologically relevant to cells but also requires substantial medium and space.
View Article and Find Full Text PDFBiological gels (bio-gels) are hydrated polymer networks that serve diverse biological functions, which often lead to intentional or unintentional exposure to particulate matter. In this work, we derive a microscopically motivated framework that enables the investigation of penetration mechanisms into bio-gels. We distinguish between two types of mechanisms: spontaneous (unforced) penetration and forced penetration.
View Article and Find Full Text PDFUnlabelled: Nanonizationhas been extensively investigated to increase theoral bioavailability of hydrophobicdrugsin general andantiretrovirals(ARVs)used inthe therapy of the human immunodeficiency virus (HIV) infection in particular. Weanticipatedthatin the caseofprotease inhibitors, a family of pH-dependent ARVsthatdisplay high aqueous solubility undertheacidconditionsof thestomach andextremely low solubilityunder the neutral ones ofthe small intestine, this strategy might failowing to an uncontrolled dissolution-re-precipitation process that will take place along the gastrointestinal tract.To tackle thisbiopharmaceutical challenge, in this work, wedesigned, produced and fully characterized a novelNanoparticle-in-MicroparticleDelivery System(NiMDS)comprised of pure nanoparticlesofthefirst-line protease inhibitor darunavir(DRV) and itsboosting agentritonavir (RIT) encapsulated within film-coated microparticles.
View Article and Find Full Text PDF