Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane.
View Article and Find Full Text PDFAntifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance.
View Article and Find Full Text PDFPharmaceutical wastewater pollution has reached an alarming stage, as many studies have reported. Membrane separation has shown great performance in wastewater treatment, but there are some drawbacks and undesired byproducts of this process. Selective membranes could be used for pollutant investigation sensors or even for pollutant recovery.
View Article and Find Full Text PDFThe hydrophilic and hydrophobic single-walled carbon nanotube membranes were prepared and progressively applied in sorption, filtration, and pertraction experiments with the aim of eliminating three antibiotics-tetracycline, sulfamethoxazole, and trimethoprim-as a single pollutant or as a mixture. The addition of SiO to the single-walled carbon nanotubes allowed a transparent study of the influence of porosity on the separation processes. The mild oxidation, increasing hydrophilicity, and reactivity of the single-walled carbon nanotube membranes with the pollutants were suitable for the filtration and sorption process, while non-oxidized materials with a hydrophobic layer were more appropriate for pertraction.
View Article and Find Full Text PDFWe present operando small-angle neutron scattering (SANS) experiments on silica fouling at two reverse osmose (RO) membranes under almost realistic conditions of practiced RO desalination technique. To its realization, two cells were designed for pressure fields and tangential feed cross-flows up to 50 bar and 36 L/h, one cell equipped with the membrane and the other one as an empty cell to measure the feed solution in parallel far from the membrane. We studied several aqueous silica dispersions combining the parameters of colloidal radius, volume fraction, and ionic strength.
View Article and Find Full Text PDFReverse osmosis (RO) seawater desalination is a widely applied technological process to supply potable water worldwide. Recently, saline groundwater (SGW) pumped from beach wells in coastal aquifers that penetrate beneath the freshwater-seawater interface is considered as a better alternative water source to RO seawater desalination as it is naturally filtered within the sediments which reduces membrane fouling and pre-treatment costs. The SGW of many coastal aquifers is anoxic - and thus, in a low redox stage - has elevated concentrations of dissolved manganese, iron and sulfides.
View Article and Find Full Text PDFThis study tests for the first time the long-term effects of pumping saline groundwater (SGW) as feed for a desalination plant on a coastal aquifer. Field measurements combined with 3D modeling of the hydrological conditions were conducted to examine the effects of SGW pumping on the aquifer system. The plant is next to the city of Almeria (South East Spain) and has been operating since 2006.
View Article and Find Full Text PDFThe morphology of thin film composite (TFC) membranes used in reverse osmosis (RO) and nanofiltration (NF) water treatment was explored with small-angle neutron scattering (SANS) and positron-annihilation lifetime spectroscopy (PALS). The combination of both methods allowed the characterization of the bulk porous structure from a few Å to µm in radius. PALS shows pores of 4.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are promising candidates for surface coatings to control biofilm growth on water treatment membranes because of their broad activity and the low tendency of bacteria to develop resistance to AMPs. However, general and convenient surface modification methods are limited, and a deeper understanding of the antimicrobial mechanism of action is needed for surface-attached AMPs. Here, we show a method for covalently attaching AMPs on porous ultrafiltration membranes using ink-jet printing and provide insight into the mode of action for the covalently tethered peptide RWRWRWA-(Bpa) (Bpa, 4-benzophenylalanine) against .
View Article and Find Full Text PDF2D graphene oxide (GO) membranes attract great attention because of their ultrathin thickness and superior molecular sieving ability, but their low flux and instability in aqueous environments are still the major challenges for practical applications. In this study, we designed hybrid nanosheets from chemically grafted GO and covalent organic frameworks (COFs) as building blocks to fabricate mixed nanosheet membranes. The covalent triazine framework (CTF), a triazine-based COF, is exfoliated into nanosheets and then reacted with GO to form the GO-CTF hybrid nanosheets, which are then assembled into GO-CTF mixed nanosheet membranes.
View Article and Find Full Text PDFSilica scaling of membranes used in reverse osmosis desalination processes is a severe problem, especially during the desalination of brackish groundwater due to high silica concentrations. This problem limits the water supply in inland arid and semiarid regions. Here, we investigated the influence of surface-exposed organic functional groups on silica precipitation and scaling.
View Article and Find Full Text PDFOver the past few decades, seawater desalination has become a necessity for freshwater supply in many countries worldwide, particularly in arid and semi-arid regions. One potentially high-quality feed water for desalination is saline groundwater (SGW) from coastal aquifers, which has lower fouling propensity than seawater. This study examines the effect of pumping SGW from a phreatic coastal aquifer on fresh groundwater, particularly on the dynamics of the fresh-saline water interface (FSI).
View Article and Find Full Text PDFBacterial biofilms that are formed on surfaces are highly detrimental to many areas of industry and medicine. Seawater desalination by reverse osmosis (RO) suffers from biofilm growth on the membranes (biofouling), which limits its widespread use because biofouling decreases water permeance and necessitates module cleaning and replacement, leading to increased economic and environmental costs. Antimicrobial peptides (AMPs) bound covalently to RO membranes inhibit biofilm growth and might delay membrane biofouling.
View Article and Find Full Text PDFBackground: Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world.
View Article and Find Full Text PDFDeveloping efficient and cost-effective adsorbents for removing heavy metals and dyes from water streams is of utmost importance as prolonged human and animals consumption might lead to adverse health effects. In the present study, an environmentally-friendly bio-composite of a polysaccharide with a protein was prepared, by conjugating chitosan to lysozyme using glutaraldehyde as a crosslinker. We investigated the utility of this chitosan-lysozyme biocomposite (CLC) as an adsorbent for the removal of methyl orange (MO) dye and hexavalent chromium (Cr(VI)) ions from aqueous solutions.
View Article and Find Full Text PDFThe synergistic effect of antimicrobial compounds is an important phenomenon that can increase the potency of treatment and might be useful against the formation of biofilms on surfaces. A strong inhibition of microbial viability on surfaces can potentially delay the development of biofilms on treated surfaces, thereby enhancing the performance of water-purification technologies and medical devices, for example, to prevent hospital-acquired infections. However, the synergistic effects of surface-immobilized antimicrobial peptides (AMPs) have not yet been reported.
View Article and Find Full Text PDFSericin, a protein waste product of the silk industry, was crosslinked with chitosan, and a chitosan-sericin conjugate (CS) was prepared, characterized and used to remove hexavalent chromium (Cr(vi)) ions and methyl orange (MO) dye from aqueous solutions. The CS was shown to effectively remove Cr(vi) ions and MO dye at maximum adsorption capacities (Langmuir) of 139 mg g for Cr(vi) ions and 385 mg g for MO dye. Moreover, the adsorption of both Cr(vi) ions and MO dye was highly pH dependent and varied under different experimental conditions.
View Article and Find Full Text PDFDesalinated domestic wastewater is an indispensable water resource in arid regions; however, its recovery can be limited by calcium phosphate scaling and fouling of the membrane. Here we investigated calcium phosphate mineralization on oligoamide surfaces that mimics reverse osmosis (RO) and nanofiltration (NF) membrane surfaces. We used a solution that simulates desalination of secondary treated domestic wastewater effluents for calcium phosphate mineralization experiments with oligoamide-coated gold surfaces.
View Article and Find Full Text PDFBiofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents.
View Article and Find Full Text PDFEnviron Sci Technol
February 2016
Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface.
View Article and Find Full Text PDFHumanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process.
View Article and Find Full Text PDFSwelling of the active layer of reverse osmosis (RO) membranes has an important effect on permeate water flux. The effects of organic- and biofouling on the swelling of the RO membrane active layer and the consequent changes of permeate flux are examined here. A cross-linked aromatic oligoamide film that mimics the surface chemistry of an RO polyamide membrane was synthesized stepwise on gold-coated surfaces.
View Article and Find Full Text PDFCalcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective desalination of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO desalination of secondary effluents of wastewater.
View Article and Find Full Text PDFAdsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality.
View Article and Find Full Text PDFBecause most "low fouling" polymers resisting bacterial attachment are hydrophilic, they are usually also significantly swollen. Swelling leads to purely physical dilution of interaction and weakens attachment; however, these nonspecific contributions are usually not separated from the specific effect of polymer chemistry. Taking advantage of the fact that chemistry and swelling of hydrogels may be independently varied through the fraction of a cross-linker, the roles of chemistry and physical dilution (swelling) in bacterial attachment are analyzed for selected hydrogels.
View Article and Find Full Text PDF