Publications by authors named "Rongzhen Wan"

Cordycepin (CRD), an adenosine analog derived from traditional Chinese medicine, is an active component in Cordyceps militaris. It has been shown to have many protective effects during liver injury and ameliorate liver disease progression, but little is known about its effect on non-alcoholic fatty liver disease (NAFLD). This study aims to explore the effects of CRD on obesity-induced NAFLD.

View Article and Find Full Text PDF

Quercetin is regarded as a potential hepatoprotective agent in the treatment of acute liver injury. However, the underlying mechanism of how quercetin to protect against lipopolysaccharides/d-galactosamine (LPS/d-GalN) induced acute liver injury remains unclear. To investigate the mechanism, the antioxidative, anti-inflammatory and antiapoptotic responses were performed.

View Article and Find Full Text PDF

To investigate the effects and mechanism of diosmetin on acute hepatic failure (AHF), an AHF murine model was established through administration of lipopolysaccharides/D-galactosamine (LPS/D-GalN). In vitro, diosmetin scavenged free radicals. In vivo, diosmetin decreased mortality among mice, blocked the development of histopathological changes and hepatic damage, and suppressed levels of inflammatory mediators and cytokines.

View Article and Find Full Text PDF

To evaluate the hepatoprotective effects and potential mechanisms of paeonol (Pae) against acute liver failure (ALF) induced by lipopolysaccharide (LPS)/d-galactosamine (d-GalN) in mice, we examined anti-oxidative, anti-inflammatory and anti-apoptotic activities of Pae. We found that Pae pretreatment markedly reduced the activities of alanine transaminase and aspartate transaminase as well as the histopathological changes induced by LPS/d-GalN. Catalase, glutathione and superoxide dismutase activities increased and reactive oxygen species activity decreased after Pae treatment compared with LPS/d-GalN treatment.

View Article and Find Full Text PDF

The lattice Boltzmann method is used to study the sedimentaion of a single charged circular cylinder in a two-dimensional channel in a Newtonian fluid. When the dielectric constant of the liquid is smaller than that of the walls, there are attractive forces between the particle and the walls. The hydrodynamic force pushes the particle towards the centerline at low Reynolds numbers.

View Article and Find Full Text PDF