Publications by authors named "Rongxian Bai"

Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (HS) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing.

View Article and Find Full Text PDF

Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations.

View Article and Find Full Text PDF

Chronic inflammation can delay wound healing, eventually leading to tissue necrosis and even cancer. Developing real-time intelligent inflammation monitoring and treatment to achieve effective wound management is important to promote wound healing. In this study, a smart multifunctional hydrogel (Hydrogel@Au NCs&DG) was proposed to monitor and treat the wound inflammation.

View Article and Find Full Text PDF

A waste biomass, sodium lignosulfonate, was treated with sodium 2-formylbenzenesulfonate, and the phenylaldehyde condensation product was then used as a robust supporting material to immobilize a copper species. The so-obtained catalyst was characterized by many physicochemical methods including FTIR, EA, FSEM, FTEM, XPS, and TG. This catalyst exhibited excellent catalytic activity in the synthesis of nitrogen-containing heterocycles such as tricyclic indoles bearing 3,4-fused seven-membered rings, 2‑arylpyridines, aminonaphthalenes and 3-phenylisoquinolines.

View Article and Find Full Text PDF

Lignosulfonate (LS) is an organic waste generated as a byproduct of the cooking process in sulfite pulping in the manufacture of paper. In this paper, LS was used as an anionic supporting material for immobilizing cationic species, which can then be used as heterogeneous catalysts in some organic transformations. With this strategy, three lignin-supported catalysts were prepared including 1) lignin-SO3 Sc(OTf)2 , 2) lignin-SO3 Cu(OTf), and 3) lignin-IL@NH2 (IL=ionic liquid).

View Article and Find Full Text PDF