Accurate and effective detection is essential to against bacterial infection and contamination. Novel biosensors, which detect bacterial bioproducts and convert them into measurable signals, are attracting attention. We developed an artificial intelligence (AI)-assisted smartphone-based colorimetric biosensor for the visualized, rapid, sensitive detection of pathogenic bacteria by measuring the bacteria secreted hyaluronidase (HAase).
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl at 0.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2022
Melanoma, the most aggressive skin cancer that originated from genetic mutations in the melanocytes, is still a troublesome medical problem under the current therapeutic approaches, which include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy and targeted therapy. Nanotechnology has significantly contributed to the development of cancer treatment in the past few years, among which extracellular vesicles (EVs) are nanosized lipid bilayer vesicles secreted from almost all cells that play essential roles in many physiological and pathological processes. In terms of melanoma therapy, the unique physicochemical properties of EVs make them promising nanocarriers for drug transportation compared to other synthetic nanocarriers.
View Article and Find Full Text PDFOsteochondral defects include the damage of cartilage and subchondral bone, which are still clinical challenges. The general replacements are difficult to simultaneously repair cartilage and subchondral bone due to their various requirements. Moreover, appropriate printable bioactive materials were needed for 3D bioprinting personalized scaffolds for osteochondral repairing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2022
Wound management remains a worldwide challenge. It is undeniable that patients with problems such as difficulties in wound healing, metabolic disorder of the wound microenvironment and even severely infected wounds always suffer great pain that affected their quality of lives. The selection of appropriate wound dressings is vital for the healing process.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2021
Immunotherapy has emerged as a promising strategy for cancer treatment, in which durable immune responses were generated in patients with malignant tumors. In the past decade, biomaterials have played vital roles as smart drug delivery systems for cancer immunotherapy to achieve both enhanced therapeutic benefits and reduced side effects. Hydrogels as one of the most biocompatible and versatile biomaterials have been widely applied in localized drug delivery systems due to their unique properties, such as loadable, implantable, injectable, degradable and stimulus responsible.
View Article and Find Full Text PDFSodium alginate-based hydrogel was the one of the most used polymers for cell delivery. However, the adsorption of extracellular matrix and proteins was inhibited due to the formation of a hydrated surface layer of these hydrogels. In this study, a novel cell delivery system, negatively-charged alginate and chondroitin sulfate microsphere hydrogel (nCACSMH), was fabricated with excellent permeability and biocompatibility in the action of a high voltage direct-current electric field.
View Article and Find Full Text PDF3D Bioprinting is expected to become a strong tool for regenerative medicine, but satisfactory bioinks for the printing of constructs containing living cells are lacking due to the rigorous requirement of high printability and biocompatibility, which are often contradictory. Here, we have reported the development of a novel hybrid bioink by combining rigid gellan gum (GG), flexible sodium alginate (SA), and a bioactive substance thixotropic magnesium phosphate-based gel (TMP-BG). The ratio of these components was first optimized to obtain satisfactory gelating, mechanical, rheological, and printing properties.
View Article and Find Full Text PDFA promising technique based on the luminescence with long wavelength excitation and short wavelength emission (LExL, λ > λ) is developed. This LExL is different from traditional upconversion luminescence (UCL). The LExL, namely, special "UCL", is realized by a xenon light source of a common spectrofluorometer.
View Article and Find Full Text PDFA sensitive fluorescent analytical method for the detection of dopamine (DA) was developed based on surface-enhanced Tb(III)/La(III) co-luminescence using silver nanoflowers (AgNFs). Anisotropic AgNFs show strong surface-enhanced fluorescence effect owing to the abundant sharp tips. Tb(III)/La(III)-DA complexes mainly bind to the sharp tips of AgNFs and thus shorten the distance between the complexes.
View Article and Find Full Text PDFHighly selective determination of dopamine (DA) over other catecholamines is an urgent need for the precise diagnosis and therapy of DA related diseases. Herein, a new formate-bridged Tb(iii)-complex and silver nanoparticles (AgNPs) enhanced fluorescent nanosensor was constructed. HCOO acted as a co-ligand of Tb(iii) and also as a linker between the Tb(iii) complex and AgNPs and more readily combined with the primary amine of DA than with epinephrine (EP).
View Article and Find Full Text PDFWei Sheng Wu Xue Bao
January 2017
Objective: The objective of this research was to study plant cell wall degradation enzymes from Fusarium sp. Q7-31T.
Methods: Strain was cultured in liquid medium with 1% (W/V) peptone as nitrogen source, 0.