Publications by authors named "Rongting Ji"

The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle.

View Article and Find Full Text PDF

Biochar and hydrochar have garnered widespread attention owing to their excellent performance in environmental remediation, carbon sequestration, and resource utilization from biowaste. Studies on the release potential of dissolved organic matter (DOM) have been limited, and the distinction between biochar and hydrochar remains unclear. In this study, pine sawdust was utilized as a model precursor with the aim of comparing the release quantity, components, and properties of DOM from biochar (BDOM) and hydrochar (HDOM) under various simulated conditions.

View Article and Find Full Text PDF

Manure biogas residue has attracted increasing attention in waste recycling but faces substantial challenges because of its low carbon content, high ash content, and high heavy metal content. A novel sequential carbonization approach was proposed for recycling biogas residue; this approach consisted of pre-pyrolysis, activation with Ca(OH), and then activation with KOH. Pig manure-derived biogas residue was upcycled into engineered biochar (EB) with a high yield (26 %) and showed excellent performance in removing a typical plasticizer, diethyl phthalate (DEP).

View Article and Find Full Text PDF

Biowaste-derived hydrochar is an emerging close-to-natural product and has shown promise for soil improvement and remediation, but the environmental behavior of the dissolved organic matter released from hydrochar (HDOM) is poorly understood. Focusing on the typical mulch film plasticizer diethyl phthalate (DEP), we investigated the effect of HDOM on the sorption behavior of DEP on soil. The relatively low concentration of HDOM (10 mg L, 25 mg L) decreases the sorption quantity of DEP on soil, while it increases by a relatively high concentration, 50 mg L.

View Article and Find Full Text PDF

Much research has been done on the preparation and application of hydrochars, but research on the release characteristics of hydrochar-derived dissolved organic matter (HDOM) is very limited; clarifying the release characteristics of HDOM is important for understanding and adjusting the environmental behaviour of hydrochar. Herein, the potential release of HDOM from rice straw-derived hydrochars prepared at different hydrothermal temperatures was investigated under various potential environmental conditions for the first time. The total release quantity and humification degree of HDOM decreased with increasing hydrothermal temperature.

View Article and Find Full Text PDF

Excellent biochar properties are crucial for sorption performance, and a developed pore structure is especially important. Herein, novel porous carbon/porous biochar (PC/PB) composites, in which the porous biochar and porous carbon were prepared at the same time, were synthesized via a green method from algal biomass with the help of the self-activation of citrate for the first time, and the composites were evaluated for the sorption of sulfamethoxazole (SMX). Many micro/meso/macropores were introduced into the PC/PB composites, which showed high specific surface areas (up to 1415 m/g) and pore volumes (up to 1.

View Article and Find Full Text PDF

Porous carbons are excellent sorbents for removing organic pollutants. Green conversion of biowaste into advanced porous carbons is crucial for industrialized production and practical applications, which, however, have rarely been investigated. This study develops a coassisted carbonization method for the preparation of porous carbons with the environmentally friendly agents HCOOK and (HCOO)Ca for the first time.

View Article and Find Full Text PDF

Precise and site-specific nitrogen (N) fertilizer management of vegetables is essential to improve the N use efficiency considering temporal and spatial fertility variations among fields, while the current N fertilizer recommendation methods are proved to be time- and labor-consuming. To establish a site-specific N topdressing algorithm for bok choy (), using a hand-held GreenSeeker canopy sensor, we conducted field experiments in the years 2014, 2017, and 2020. Two planting densities, viz, high (123,000 plants ha) in Year I and low (57,000 plants ha) in Year II, whereas, combined densities in Year III were used to evaluate the effect of five N application rates (0, 45, 109, 157, and 205 kg N ha).

View Article and Find Full Text PDF

Biochar has attracted great interest in both CO capture and supercapacitor applications due to its unique physicochemical properties and low cost. Fabrication of eco-friendly and cost-effective biochar from high potential biomass feces can not only realize the functional application of waste, but also a potential way of future carbon capture and energy storage technology. In this study, a novel KOH activation waste-fed feces biochar (TMFB) was developed and investigated in terms of CO capture and electrochemical performance.

View Article and Find Full Text PDF

Contaminated soils have caused serious harm to human health and the ecological environment due to the high toxicity of organic and inorganic pollutants, which has attracted extensive attention in recent years. Because of its low cost, simple operation and high efficiency, soil washing technology is widely used to permanently remove various pollutants in contaminated soils and is considered to be the most promising remediation technology. This review summarized the recent developments in the field of soil washing technology and discusses the application of conventional washing agents, advanced emerging washing agents, the recycling of washing effluents and the combination of soil washing and other remediation technologies.

View Article and Find Full Text PDF

In this study, three high-performance porous biochars were synthesized by the cocarbonization of Pistia stratiotes-derived precursors (raw biomass, hydrochar and pyrochar) with potassium hydroxide and utilized for the sorption of diethyl phthalate from aqueous solution. The developed pore structure, surface functional groups, high hydrophobicity characteristic and graphene structure of porous biochars contributed to the excellent sorption quantity of up to 813 mg g (C, 25 mg L). Among the three precursors, hydrochar-derived porous biochar showed better properties in terms of its specific surface area and hydrophobicity, and it displayed the highest sorption capacity.

View Article and Find Full Text PDF

In contrast to the efforts dedicated to applying porous biochars in environmental remediation, the search for green synthesis methods, which are crucial for industrialized production, is often neglected. Herein, oxygen-doped porous biochars were prepared for the first time by the assisted carbonization of hydrochar with a novel noncorrosive activator, potassium formate, and these biochars displayed a porous structure with large amounts of micropores (surface area: 1242 ∼ 1386 m g). Interestingly, the biochars contained an abundance of oxygen element (20 ∼ 26%), which formed many functional groups.

View Article and Find Full Text PDF

Plant growth regulators are known to exert strong influences on plant performance under abiotic stress, including exposure to high nitrate, as occurs commonly in intensive vegetable production. However, direct comparative evaluations of growth regulators under otherwise identical conditions in major crop species are scarce. In this study, tomato ( L.

View Article and Find Full Text PDF

Fluorescence excitation-emission matrix (EEM) spectroscopy is a powerful tool for characterizing dissolved organic matter (DOM), a key component of anaerobic digestion. In this study, the fluorescence characteristics of DOM during 55 days of anaerobic digestion of oil crop straw inoculated with rumen liquid were investigated. EEM spectroscopy coupled with parallel factor analysis (PARAFAC) showed that three major fluorescence components, tyrosine- (C), humic- (C) and tryptophan-like substances (C), were identified in all DOM samples.

View Article and Find Full Text PDF

Fluorescence excitation-emission matrix (EEM) spectroscopy is a powerful tool to characterize DOM that interacts with heavy metals in MSWI bottom ash (IBA). Here, two fresh IBA samples collected from large MSWI plants were subjected to 33 days of accelerated weathering. Carbon content and fluorescence characterization of DOM and leaching behavior of heavy metals (Cu, Ba, Cr, Ni, and oxyanions) were monitored during the weathering.

View Article and Find Full Text PDF

A one-pot co-pyrolysis of potassium/calcium carbonate with biowaste-derived hydrochar strategy was proposed to prepare hierarchical porous biochars (HPBs) for the first time. The pore structure, especially the pore size distribution, could be designed by adjusting the mass ratios of different carbonates. HPBs were hydrophobic, nitrogen doped, graphitized, and contained surface functional groups.

View Article and Find Full Text PDF

Invasive plants pose a significant threat to natural ecosystems because of their high adaptability, rapid propagation and spreading ability in the environment. In this study, a typical aquatic invasive plant, Pistia stratiotes, was chosen as a novel feedstock for the preparation of nitrogen-doped biochars (NBs) for the first time, and the NBs were used as efficient sorbents to remove phthalate esters (PAEs) from aqueous solution. Characterization results showed that NBs possess great pore structure (up to 126.

View Article and Find Full Text PDF

Potential release quantity and quality of dissolved organic matter (DOM) from hydrochar (HDOM) in various environmental conditions were investigated. Corn cobs were utilized as model agricultural residue to prepare the hydrochar. Four extracts, ultra-pure water, acid solution, alkali solution and salt solution, and two temperatures, 20 °C and 60 °C, were adopted to imitate various environmental conditions.

View Article and Find Full Text PDF

Nitrogen-doped porous biochar (NPB) with a large specific surface area, wide pore size distribution, graphitized structure, nitrogen doping, and hydrophobicity was fabricated by high-temperature modification of algal biochar with potassium carbonate. This NPB was then uniformly coated on stainless steel wire as a novel solid-phase microextraction (SPME) fiber. The extraction efficiency of NPB-coated fiber for seven chlorobenzenes (CBs) was excellent; it was 1.

View Article and Find Full Text PDF

Thermophilic solid-state anaerobic digestion (SS-AD) of agricultural wastes, i.e., corn straw, cattle manure, and vegetable waste, was carried out in this study.

View Article and Find Full Text PDF

Enhanced macroalgal biochars with large specific surface areas (up to 399 m g), partly graphitized structure, high nitrogen doping (up to 6.14%), and hydrophobicity were fabricated by co-carbonization of macroaglae, ferric chloride, and zinc chloride. These biochars were used as sorbents for the removal of polycyclic aromatic hydrocarbons from water.

View Article and Find Full Text PDF

There is urgent demand for the design of advanced coating materials for solid-phase microextraction (SPME) for water quality monitoring and assessment because of the global occurrence of chlorobenzenes (CBs). In this study, we proposed a dual-order activation method in which potassium hydroxide is used to modify pre-activated calcium citrate to synthesize a highly developed meso-/microporous carbon (MMC). The as-obtained MMC presented well-developed porosity with a super-high specific surface area (2638.

View Article and Find Full Text PDF

In this study, rape straw- and corn cob-derived porous carbons (PCs) were fabricated by hydrothermal treatment (250 °C, 4 h) and subsequent activation (850 °C, 1 h) using a non-corrosive agent, potassium bicarbonate. The PCs exhibited a very large specific surface area (1069-1281 cm g), high pore volume (0.55-0.

View Article and Find Full Text PDF

Highly sensitive solid-phase microextraction (SPME) of broad-spectrum organic micropollutants is a significant challenge due to the limited available pore sizes and pore size distributions (PSDs) of the probes. In this work, we synthesized novel multimodal porous carbons (MPCs) using facile and environment-friendly route for the first time, through direct carbonization of a potassium citrate and calcium citrate mixture. The co-carbonization process formed hierarchical structures with super-high specific surface areas (up to 3270 m g) and pore volumes (up to 1.

View Article and Find Full Text PDF

To guarantee the safety of water resources for humans, there is a high demand for the development of highly-efficient probes for solid-phase microextraction and analysis of trace organic pollutants. In this work, we greenly synthesized nanoporous carbons (NPCs) from oilseed rape straw a facile hydrothermal treatment and potassium bicarbonate activation. Results showed that the NPCs had partly graphitic, amorphous-like structures with a high surface area (up to 1253 m g), large pore volume (up to 0.

View Article and Find Full Text PDF