Publications by authors named "Rongtao Lu"

Graphene was inserted into the interface between electric dipole layers from DEME-TFSI ionic liquid (top-gate) and ferroelectric PbLaZrTiO (PLZT, back-gate) to probe the interface dipole-dipole interaction in response to DC and pulsed gate voltages. A highly complicated behavior of the interface dipole-dipole interaction has been revealed as a combination of electrostatic and electrochemical effects. The interfacial polar molecules in the DEME-TFSI electrical double layer are pinned with assistance from the PLZT back-gate in response to a DC top-gate pump, leading to strong nonlinear electrochemical behavior.

View Article and Find Full Text PDF

While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 10(7) has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off.

View Article and Find Full Text PDF

A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.

View Article and Find Full Text PDF

Carbon nanotube (CNT) film nanobolometers take advantages of high infrared absorption of CNTs, proving a promising alternative for low-cost, uncooled infrared detection. The performance of the CNT nanobolometers is determined by the optoelectronic process on CNTs at a microscopic scale, which links intimately to the diameter of the CNT-a critical parameter that intrinsically affects the band gap and hence infrared absorption, as well as extrinsically affects the surface oxygen adsorption effect and thermal-link of the CNT detector element to the environment. Both the intrinsic and extrinsic factors play important roles in the photoresponse, noise spectrum and the figure-of-merit detectivity D* of the CNT nanobolometers and their interplay determines the device's ultimate performance.

View Article and Find Full Text PDF

Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes.

View Article and Find Full Text PDF

High-aspect-ratio, vertically aligned carbon nanofibers (VACNFs) were conformally coated with aluminum oxide (Al2O3) and aluminum-doped zinc oxide (AZO) using atomic layer deposition (ALD) in order to produce a three-dimensional array of metal-insulator-metal core-shell nanostructures. Prefunctionalization before ALD, as required for initiating covalent bonding on a carbon nanotube surface, was eliminated on VACNFs due to the graphitic edges along the surface of each CNF. The graphitic edges provided ideal nucleation sites under sequential exposures of H2O and trimethylaluminum to form an Al2O3 coating up to 20 nm in thickness.

View Article and Find Full Text PDF

Efficient exciton dissociation is crucial to obtaining high photonic response in photodetectors. This work explores implementation of a novel exciton dissociation mechanism through heterojunctions self-assembled at the graphene/MWCNT (multiwall carbon nanotube) interfaces in graphene/MWCNT nanohybrids. Significantly enhanced near-infrared photoresponsivity by nearly an order of magnitude has been achieved on the graphene/MWCNT nanohybrids as compared to the best achieved so far on carbon nanotube (CNT) only infrared (IR) detectors.

View Article and Find Full Text PDF

Despite the potentials and the efforts put in the development of uncooled carbon nanotube infrared detectors during the past two decades, their figure-of-merit detectivity remains orders of magnitude lower than that of conventional semiconductor counterparts due to the lack of efficient exciton dissociation schemes. In this paper, we report an extraordinary photocurrent harvesting configuration at a semiconducting single-walled carbon nanotube (s-SWCNT)/polymer type-II heterojunction interface, which provides highly efficient exciton dissociation through the intrinsic energy offset by designing the s-SWCNT/polymer interface band alignment. This results in significantly enhanced near-infrared detectivity of 2.

View Article and Find Full Text PDF

Transparent conductors (TCs) are an important component of optoelectronic devices and nanoscale engineering of TCs is important for optimization of the device performance through improved light trapping. In this work, patterned periodic arrays of nanopillars and nanolines of pitch size of ~700 nm were created on fluorine-doped tin oxide (FTO) using nanoimprint lithography and reactive ion etching using environmentally friendly gases. The patterned FTO exhibits enhanced light trapping as compared to the unpatterned FTO, which agrees well with simulations based on Finite-Difference Time-Domain method for up to a distance of 4 μm.

View Article and Find Full Text PDF

The 1/f noise and temperature coefficient of resistance (TCR) are investigated in multiwall carbon nanotube (MWCNT) film bolometers since both affect the bolometer detectivity directly. A comparison is made between the MWCNT film bolometers and their single-wall carbon nanotube (SWCNT) counterparts. The intrinsic noise level in the former has been found at least two orders of magnitude lower than that in the latter, which outweighs the moderately lower TCR absolute values in the former and results in higher bolometer detectivity in MWCNT bolometers.

View Article and Find Full Text PDF