Publications by authors named "Rongrong Si"

The simultaneous hydrolysis of cellulose and hemicellulose involves trade-offs, making precise control of hydrolysis products crucial for sustainable development. This study employed three machine learning (ML) models-Random Forest (RF), Extreme Gradient Boosting (XGB), and Support Vector Machines (SVM)-to simulate and predict the yields of xylose (Xyl), furfural (FF), glucose (Glu), 5-hydroxymethylfurfural (5-HMF), and levulinic acid (LA) in a phosphoric acid/acetone/water system. The RF model demonstrated the highest accuracy, with R values between 0.

View Article and Find Full Text PDF

Wood-conducting polymer materials have been widely used as supercapacitor electrode; however, it remains challenging to achieve a simple method to improve the homogeneity of the conductive material on wood and to reach high mass loading. Herein, a novel "pore-making, active substance-filling, densification (dissolution, in-situ polymerization of polyaniline (PANI), self-shrinking)" strategy is proposed for the preparation of wood electrodes with a high mass loading (41.4 wt%) and homogeneity.

View Article and Find Full Text PDF

Ultralight aerogels with low bulk density, highly porous nature, and functional performance have received significant focus in the field of water pollution treatment. Here, high-crystallinity, large surface-aera metal frame-work (ZIF-8) was efficiently utilized to assist in the preparation of ultralight yet highly oil and organic solvent adsorption capacity, double-network cellulose nanofibers/chitosan-based aerogels through a physical entanglement and scalable freeze-drying approach. After chemical vapor deposition with methyltrimethoxysilane, a hydrophobic surface was obtained with a water contact angle of 132.

View Article and Find Full Text PDF

Heavy metal ions in industrial sewage constitute a serious threat to human health. Nanocellulose-based adsorbents are emerging as an environmentally friendly material platform for heavy metal ion removal based on their unique properties, which include high specific surface area, excellent mechanical properties, and biocompatibility. In this review, we cover the most recent works on nanocellulose-based adsorbents for heavy metal ion removal and present an in-depth discussion of the modification technologies for nanocellulose in the process of assembling high-performance heavy ion adsorbents.

View Article and Find Full Text PDF

Agouti-related protein/neuropeptide Y (AgRP/NPY) neurons promote feeding, while proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART) neurons and melanocortin receptor neurons inhibit feeding; these three types of neurons play vital roles in regulating feeding. The central melanocortin system composed of these neurons is critical for the regulation of food intake and energy metabolism. It regulates energy intake and consumption by activating or inhibiting the activities of AgRP/NPY neurons and POMC/CART neurons and then affects the feeding behaviour of animals to maintain the energy balance.

View Article and Find Full Text PDF

In the present study, carboxymethyl cellulose nanofibrils (CMCNFs) with different carboxyl content (0.99-2.01 mmol/g) were prepared via controlling the ratio of monochloroacetic acid (MCA) and sodium hydroxide to Eucalyptus bleached pulp (EBP).

View Article and Find Full Text PDF

α-Sn is a topologically nontrivial semimetal in its natural structure. Upon compressively strained in plane, it transforms into a topological insulator. But, up to now, a clear and systematic understanding of the topological surface mode of topological insulating α-Sn is still lacking.

View Article and Find Full Text PDF