Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).
View Article and Find Full Text PDFSnO is deemed a potential candidate for high energy density (1494 mAh g) anode materials for Li-ion batteries (LIBs). However, its severe volume variation and low intrinsic electrical conductivity result in poor long-term stability and reversibility, limiting the further development of such materials. Therefore, we propose a novel strategy, that is, to prepare SnO hollow nanospheres (SnO-HNPs) by a template method, and then introduce these SnO-HNPs into one-dimensional (1D) carbon nanofibers (CNFs) uniformly via electrospinning technology.
View Article and Find Full Text PDF