With cellulose as the precursor and ethylenediamine as the N source, N-doped graphene quantum dots (N-GQDs) were synthesized by a simple and feasible one-pot hydrothermal method. The whole process did noSchemet need a strong acid or strong base and avoided interference from inorganic salt residues. The whole process lasted only 3 h and avoided any complex postprocessing.
View Article and Find Full Text PDFVinyl sulfones are crucial building blocks in synthetic chemistry and core structural units of pharmaceutically active molecules, thus extensive investigations have been conducted on the construction of these skeletons. In contrast to the classical synthetic approaches, the radical sulfonylation of alkynes for producing vinyl sulfones has garnered considerable interest because of its mild conditions and high efficiency. Radical sulfonation of alkynes typically begins with the sulfonyl radical attacking the alkynes, followed by further functionalization.
View Article and Find Full Text PDFThe emerging sample pretreatment technique of magnetic solid-phase extraction (MSPE) has drawn the attention of researchers owing to its advantages of less reagent consumption, fast separation/enrichment process, high adsorption capacity, and simple operation. This paper presents a review of synthesis techniques, classification, and analysis procedures for MSPE in the detection of heavy metals in food. Magnetic adsorbents derived from silica, metal oxides, carbon, polymers, , are applied for the detection of heavy metals in food.
View Article and Find Full Text PDFXanthine can be converted into uric acid, and a high concentration of xanthine in the human body can cause many diseases. Therefore, it is important to develop a sensitive, simple, and reliable approach for measuring xanthine in biological liquids. Hence, a ratiometric surface-enhanced Raman spectroscopy (SERS) sensing strategy with one signal probe was exploited for reliable, sensitive, and quantitative monitoring of serum xanthine.
View Article and Find Full Text PDFRadical cyclization is regarded as a powerful and promising strategy for the assembly of diverse important cyclic structures because of its high atom- and step-economy. As excellent radical acceptors, alkenes offer two potential directions, pushing the research domain of radical cyclization. In this context, as a radical precursor, sulfonyl hydrazide plays an important role in accomplishing radical cyclization of alkenes in a facile and efficient way.
View Article and Find Full Text PDFChemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time.
View Article and Find Full Text PDFA novel 5-/6- bicyclization of 1,6-enynes with sulfonyl hydrazides in the aqueous phase using the cheap and available tetrabutylammonium iodide (TBAI)--butyl hydroperoxide (TBHP) combined system is reported. The resulting reaction of diverse nitrogen- and oxygen-polyheterocycles displays high chemical selectivity, high step-economy, and a moderate substrate scope. Moreover, iodosulfonylation can be realized by modulating the structure of the 1,6-enynes.
View Article and Find Full Text PDFA novel Cu(i)-catalyzed intermolecular cyanoarylation of alkenes with diaryliodonium salts as a radical arylating reagent and tetra-butylammonium cyanide as an electrophilic cyanating reagent was established. A broad range of α-alkylated arylacetonitriles were efficiently constructed in good to excellent yields under base- and oxidant-free and mild conditions.
View Article and Find Full Text PDF