In recent years, various automated methods for plant phenotyping addressing roots or shoots have been developed and corresponding platforms have been established to meet the diverse requirements of plant research and breeding. However, most platforms are only either able to phenotype shoots or roots of plants but not both simultaneously. This substantially limits the opportunities offered by a joint assessment of the growth and development dynamics of both organ systems, which are highly interdependent.
View Article and Find Full Text PDFQuantitative characterization of root system architecture and its development is important for the assessment of a complete plant phenotype. To enable high-throughput phenotyping of plant roots efficient solutions for automated image analysis are required. Since plants naturally grow in an opaque soil environment, automated analysis of optically heterogeneous and noisy soil-root images represents a challenging task.
View Article and Find Full Text PDFAntagonistic interactions of phosphorus (P) hamper iron (Fe) acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe-P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73.
View Article and Find Full Text PDFRoot systems architecture (RSA) and size properties are essential determinants of plant performance and need to be assessed in high-throughput plant phenotyping platforms. Thus, we tested a concept that involves near-infrared (NIR) imaging of roots growing along surfaces of transparent culture vessels using special long pass filters to block their exposure to visible light. Two setups were used to monitor growth of Arabidopsis, rapeseed, barley and maize roots upon exposure to white light, filter-transmitted radiation or darkness: root growth direction was analysed (1) through short-term cultivation on agar plates, and (2) using soil-filled transparent pots to monitor long-term responses.
View Article and Find Full Text PDFBackground: Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments.
View Article and Find Full Text PDFBackground: Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH. To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the maize intermated B73 × Mo17 (IBM) population, (ii) to identify quantitative trait loci (QTLs) for these traits, and (iii) to analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained from the QTL analysis.
View Article and Find Full Text PDF• Retranslocation of iron (Fe) from source leaves to sinks requires soluble Fe binding forms. As much of the Fe is protein-bound and associated with the leaf nitrogen (N) status, we investigated the role of N in Fe mobilization and retranslocation under N deficiency- vs dark-induced leaf senescence. • By excluding Fe retranslocation from the apoplastic root pool, Fe concentrations in source and sink leaves from hydroponically grown barley (Hordeum vulgare) plants were determined in parallel with the concentrations of potential Fe chelators and the expression of genes involved in phytosiderophore biosynthesis.
View Article and Find Full Text PDFAs long as 130 years ago Rissmüller reported substantial retranslocation of iron (Fe) from beech leaves (Fagus sylvatica L.) shortly before leaf fall. This rather limited report on Fe retranslocation via the phloem in plants was the reason for this research to study changes in Fe content in individual beech leaves in more detail during the vegetative period.
View Article and Find Full Text PDFHydrophilic interaction chromatography (HILIC) has emerged as a very useful separation method for polar analytes, including non-covalent metal species. Several types of stationary phases are available for HILIC applications, differing mainly in their chemical functionalities that supply additional interaction modes and alternative selectivities for the separation of special analytes. With regard to the separation of metal species only few of these stationary phases have been applied to date, and it is not completely clear what are their differences with respect to the chromatographic separation of metal species, but also with respect to species stability during chromatography.
View Article and Find Full Text PDFHuman deficiencies of iron (Fe) and zinc (Zn) are worldwide problems. Biofortification of wheat could reduce Fe and Zn deficiencies in societies that depend on wheat consumption. This study investigated the effects of foliar application of Fe with or without Zn on the concentrations of Fe and Zn in grain and especially in flour of three wheat cultivars.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
April 2009
Deficiency of micronutrients, especially iron and zinc, has been a serious malnutrition problem worldwide in human health. Increasing Fe and Zn concentrations in grains by means of plant breeding is a sustainable, effective and important way to improve human mineral nutrition and health. However, little information on grain Fe and Zn concentrations in Chinese wheat genotypes is available.
View Article and Find Full Text PDF