Porcine deltacoronavirus (PDCoV) is a novel porcine intestinal coronavirus that causes diarrhea in pigs of various ages, especially in suckling pigs. Developing effective treatments and vaccines is crucial to preventing PDCoV transmission and infection. This study evaluated the immune response elicited by the PDCoV S1 subunit and an inactivated PDCoV vaccine in mice.
View Article and Find Full Text PDFUnlabelled: Variant (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests.
View Article and Find Full Text PDFUnlabelled: Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023.
View Article and Find Full Text PDFPorcine deltacoronavirus (PDCoV), a cross-species transmissible enterovirus, frequently induces severe diarrhea and vomiting symptoms in piglets, which not only pose a significant menace to the global pig industry but also a potential public safety risk. In a previous study, we isolated a vaccine candidate, PDCoV CZ2020-P100, by passaging a parental PDCoV strain in vitro, exhibiting attenuated virulence and enhanced replication. However, the factors underlying these differences between primary and passaged strains remain unknown.
View Article and Find Full Text PDFUnlabelled: Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, is a serious threat to piglets and has zoonotic potential. Here, we aimed to further explore the role of aminopeptidase N (APN) as a receptor for PDCoV and test the inhibitory effect of a chimeric APN protein strategy on PDCoV infection. PK-15 cells and LLC-PK1 cells expressing chimeric APN were selected and infected with PDCoV.
View Article and Find Full Text PDFIn recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common.
View Article and Find Full Text PDFPorcine deltacoronavirus (PDCoV) is an emergent enteric coronavirus, primarily inducing diarrhea in swine, particularly in nursing piglets, with the additional potential for zoonotic transmission to humans. Despite the significant impact of PDCoV on swine populations, its pathogenic mechanisms remain incompletely understood. Complement component 3 (C3) plays a pivotal role in the prevention of viral infections, however, there are no reports concerning the influence of C3 on the proliferation of PDCoV.
View Article and Find Full Text PDFPorcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old.
View Article and Find Full Text PDFStress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication.
View Article and Find Full Text PDFAs one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells.
View Article and Find Full Text PDFRetrieving a phase map from a single closed fringe pattern is a challenging task in optical interferometry. In this paper, a convolutional neural network (CNN), HRUnet, is proposed to demodulate phase from a closed fringe pattern. The HRUnet, derived from the Unet model, adopts a high resolution network (HRnet) module to extract high resolution feature maps of the data and employs residual blocks to erase the gradient vanishing in the network.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) has caused serious economic losses to the pig husbandry worldwide, and the effects of existing commercialized vaccines are suboptimal. Therefore, research to develop an efficacious vaccine for prevention and control of PEDV is essential. In this study, we designed and produced trimerized proteins of full-length PEDV spike (S) protein, S1 subunit, and a tandem of multiple epitopes of S protein using an efficient mammalian expression vector system in HEK 293F cells.
View Article and Find Full Text PDFAs an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine.
View Article and Find Full Text PDFPorcine epidemic diarrhea (PED) caused by PED virus (PEDV) remains a big threat to the swine industry worldwide. Vaccination with live attenuated vaccine is a promising method to prevent and control PED, because it can elicit a more protective immunity than the killed vaccine, subunit vaccine, and so on. In this study, we found two obvious deletions in the genome of a high passage of AH2012/12.
View Article and Find Full Text PDFPorcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders of pigs and wild boars, but rarely detected in the feces of pigs. In this study, a sample of swine diarrhea that tested positive for PTVs is subjected to high-throughput sequencing. The viral genome was 7221 nucleotides (nt) in length, which was consisted of twelve genes.
View Article and Find Full Text PDFPorcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). Large-scale outbreaks of PEDV have caused huge economic losses to the pig industry since 2010. Neutralizing antibodies play a pivotal role in protecting piglets from enteric infections.
View Article and Find Full Text PDFCoronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor.
View Article and Find Full Text PDFThe interferon-delta family was first reported in domestic pigs and belongs to the type I interferon (IFN-I) family. The enteric viruses could cause diarrhea in newborn piglets with high morbidity and mortality. We researched the function of the porcine IFN-delta (PoIFN-δ) family in the porcine intestinal epithelial cells (IPEC-J2) cells infected with porcine epidemic diarrhea virus (PEDV).
View Article and Find Full Text PDFPorcine deltacoronavirus (PDCoV) cause diarrhea and dehydration in newborn piglets and has the potential for cross-species transmission. Rapid and early diagnosis is important for preventing and controlling infectious disease. In this study, two monoclonal antibodies (mAbs) were generated, which could specifically recognize recombinant PDCoV nucleocapsid (rPDCoV-N) protein.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved protein with strong immunogenicity and palys an important role in PEDV diagnosis. However, epitopes on the PEDV N protein have not yet been well characterized.
View Article and Find Full Text PDFSwine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11.
View Article and Find Full Text PDF