Publications by authors named "Rongli Deng"

Decellularized extracellular matrix hydrogel, especially that derived from spinal cord (DSCM hydrogel), has been actively considered as a functional biomaterial for remodeling the extracellular matrix of the native tissue, due to its unique characteristics in constructing pro-regenerative microenvironment for neural stem cells (NSCs). Furthermore, DSCM hydrogel can provide multiple binding domains to growth factors and drugs. Therefore, both exogenous neurotrophic factors and anti-inflammatory drugs are highly desired to be incorporated into DSCM hydrogel, which may synergistically modulate the complex microenvironment at the lesion site after spinal cord injury (SCI).

View Article and Find Full Text PDF

To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum.

View Article and Find Full Text PDF

Repairing critical bone defects is a complex problem in the clinic. The periosteum rich in nerve plays a vital role in initiating and regulating bone regeneration. However, current studies have paid little attention to repairing nerves in the periosteum to promote bone regeneration.

View Article and Find Full Text PDF

Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising for bone tissue engineering, which have a non-invasive harvesting process, high cell yield, favorable proliferation capacity, and low immunogenicity. However, the osteogenic efficacy of hUCMSCs is relatively lower than that of bone marrow mesenchymal stem cells (BMSCs). Hydrogels from decellularized extracellular matrix (dECM) preserve the biological compositions and functions of natural ECM, which can provide tissue-specific cues to regulate phenotypic expression and cell fate.

View Article and Find Full Text PDF

Neurological functional recovery depends on the synergistic interaction between angiogenesis and neurogenesis after peripheral nerve injury (PNI). Decellularized nerve matrix hydrogels have drawn much attention and been considered as potential therapeutic biomaterials for neurovascularization, due to their intrinsic advantages in construction of a growth-permissive microenvironment, strong affinity to multiple growth factors (GFs), and promotion of neurite outgrowth. In the present study, nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were incorporated into porcine decellularized nerve matrix hydrogel (pDNM-gel) for PNI treatment.

View Article and Find Full Text PDF