Publications by authors named "Rongjun Qin"

Quantifying the colors of objects is useful in a wide range of applications, including medical diagnosis, agricultural monitoring, and food safety. Accurate colorimetric measurement of objects is a laborious process normally performed through a color matching test in the laboratory. A promising alternative is to use digital images for colorimetric measurement, due to their portability and ease of use.

View Article and Find Full Text PDF

Hyperspectral imaging is capable of capturing information beyond conventional RGB cameras; therefore, several applications of this have been found, such as material identification and spectral analysis. However, similar to many camera systems, most of the existing hyperspectral cameras are still passive imaging systems. Such systems require an external light source to illuminate the objects, to capture the spectral intensity.

View Article and Find Full Text PDF

Background: One of the main problems that may put people's safety in danger is the lack of real-time detection, evaluation, and recognition of predictable safety risks. Current real-time risk identification solutions are limited to proximity sensing, which lack providing the exposed person with risk-specific information in real-time. Combined values of concurrently presented risks are either unrecognized or underestimated.

View Article and Find Full Text PDF

The evolution of mobile mapping systems (MMSs) has gained more attention in the past few decades. MMSs have been widely used to provide valuable assets in different applications. This has been facilitated by the wide availability of low-cost sensors, advances in computational resources, the maturity of mapping algorithms, and the need for accurate and on-demand geographic information system (GIS) data and digital maps.

View Article and Find Full Text PDF

Rapid, robust virus-detection techniques with ultrahigh sensitivity and selectivity are required for the outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Here, we report that the femtomolar concentrations of single-stranded ribonucleic acid (ssRNA) of SARS-CoV-2 trigger ordering transitions in liquid crystal (LC) films decorated with cationic surfactant and complementary 15-mer single-stranded deoxyribonucleic acid (ssDNA) probe. More importantly, the sensitivity of the LC to the SARS ssRNA, with a 3-bp mismatch compared to the SARS-CoV-2 ssRNA, is measured to decrease by seven orders of magnitude, suggesting that the LC ordering transitions depend strongly on the targeted oligonucleotide sequence.

View Article and Find Full Text PDF

Unexploded ordnance (UXO) pose a significant threat to post-conflict communities, and current efforts to locate bombs rely on time-intensive and dangerous in-person enumeration. Very high resolution (VHR) sub-meter satellite images may offer a low-cost and high-efficiency approach to automatically detect craters and estimate UXO density. Machine-learning methods from the meteor crater literature are ill-suited to find bomb craters, which are smaller than meteor craters and have high appearance variation, particularly in spectral reflectance and shape, due to the complex terrain environment.

View Article and Find Full Text PDF