Publications by authors named "Rongjuan Wang"

Several animal models have been used to assist the development of vaccines and therapeutics since the COVID-19 outbreak. Due to the lack of binding affinity of mouse angiotensin-converting enzyme II (ACE2) to the S protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), increasing the susceptibility of mice to SARS-CoV-2 infection was considered in several ways. Here, we generated a COVID-19 mouse model expressing human ACE2 (hACE2) under the control of the CAG promoter.

View Article and Find Full Text PDF

Even though PD-1/PD-L1 is an identified key "don't find me" signal to active adaptive immune system for cancer treatment, the overall response rate (ORR) for all cancer patients is still limited. Other effective therapeutic modalities to bridge the innate and adaptive immunity to improve ORR are urgently needed. Recently, CD47/SIRPα interaction is confirmed as a critical "don't eat me" signal to active innate immunity.

View Article and Find Full Text PDF

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and have consistently replaced the previous dominant variant. Therapeutics against variants of SARS-CoV-2 are urgently needed. Ideal SARS-CoV-2 therapeutic antibodies would have high potency in viral neutralization against several emerging variants.

View Article and Find Full Text PDF

Understanding the underlying molecular mechanisms behind ADE of SARS-CoV-2 is critical for development of safe and effective therapies. Here, we report that two neutralizing mAbs, MW01 and MW05, could enhance the infection of SARS-CoV-2 pseudovirus on FcγRIIB-expressing B cells. X-ray crystal structure determination and S trimer-binding modeling showed that MW01 and MW05 could bind to RBDs in S trimer with both "up" and "down" states.

View Article and Find Full Text PDF

The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use.

View Article and Find Full Text PDF

Akkermansia muciniphila is a probiotic inhabiting host intestinal mucus layers and displays evident easing or therapeutic effects on host enteritis and metabolic disorders such as obesity and diabetes. The outer membrane protein Amuc_1100 of A. muciniphila is likely to play a crucial role during the interaction with the host.

View Article and Find Full Text PDF

Efficacious interventions are urgently needed for the treatment of COVID-19. Here, we report a monoclonal antibody (mAb), MW05, with SARS-CoV-2 neutralizing activity by disrupting the interaction of receptor binding domain (RBD) with angiotensin-converting enzyme 2 (ACE2) receptor. Crosslinking of Fc with FcγRIIB mediates antibody-dependent enhancement (ADE) activity by MW05.

View Article and Find Full Text PDF

Akkermansia muciniphila is a beneficial microorganism colonized in the human gut that can reverse many intestinal metabolic-related diseases. Amuc_1100 is an outer-membrane protein of A. muciniphila.

View Article and Find Full Text PDF

Oxaliplatin (L-OHP) is one of the effective chemotherapeutic drugs for colorectal cancer (CRC). Further investigation into the molecular mechanism of chemoresistance could improve outcomes for patients with colorectal cancer. Recently, microRNAs have been reported as a key in drug resistance of tumors.

View Article and Find Full Text PDF

Programmed cell death 1 (PD-1) is inhibitory receptor and immune checkpoint protein. Blocking the interaction of PD-1 and its ligands PD-L1/ L2 is able to active T-cell-mediated antitumor response. Monoclonal antibody-based drugs targeting PD-1 pathway have exhibited great promise in cancer therapy.

View Article and Find Full Text PDF

This study constructed a series of novel micelles based on star-shaped amphiphilic copolymers (sPEC/CDs), and aimed to confirm the important role poly(ε-caprolactone) (PCL) segments played to improve the various properties of micelles. sPEC/CDs, consisting of β-cyclodextrin (β-CD) as a core and monomethoxy poly(ethylene glycol) (mPEG) and PCL diblock copolymers as arms, were synthesized by arm-first method. The critical micelle concentrations (CMC) of sPEC/CDs were determined by fluorescence spectrophotometry using pyrene as a probe.

View Article and Find Full Text PDF

Cobalt ferrite (CoFe2O4) nano-particles were synthesized by the hydrothermal method with the addition of a surfactant sodium bis(2-ethylhexyl) sulphosuccinate (AOT). Characterization measurements including X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy showed that all the final products were single-phase CoFe2O4 nano-crystals with AOT molecules bonding to the surfaces, the average crystallite sizes were all near 25 nm, and the lattice constant increased with the increasing mass of AOT. The magnetic hysteresis loops measured at room temperature indicated that the bonding of the AOT to the surfaces led to an increase of the saturation magnetization (Ms), the coercivity (Hc) and the remanence ratio (Mr/Ms).

View Article and Find Full Text PDF

At the high level of dissolved oxygen (DO) in sequencing batch biofilm reactor (SBBR), the approach and mechanism for realizing shortcut nitrification were researched. Landfill leachate was used as handling of object, the mainly environment parameters of the reactor were controlled as follow: DO 5 mg/L, pH 7.0, temperature 25 degrees C, adopted all drainage mode and 12-hour cycle influent.

View Article and Find Full Text PDF

MBFGA1, which was produced by Paenibacillus polymyxa GA1, was used to investigate its flocculating capability in the following waste water, the liquid of kaolin, soil suspended liquid, coal-washing wastewater and the landfill leachate with orthogonal experiments, the inspection of granularity and the scanning electron microanalysis. Meanwhile the anthrone reaction and infrared spectrum are also applied to identify its main component. In the optimal flocculating conditions obtained from the orthogonal experiments, the flocculating rates of the liquid of kaolin, soil suspended liquid, coal-washing wastewater and the landfill leachate were 99.

View Article and Find Full Text PDF

The conventional microorganism techniques and the molecule biological techniques such as PCR and DGGE were utilized to study the approaches of biological nitrogen removal in a single sequencing batch biofilm reactor (SBBR). The main approach of biological nitrogen removal, no less than 65% of the total NH4(+)-N was removed in this approach, was composed of partial nitrification, anaerobic ammonium oxidation and denitrification. The second approach included twain processes such as partial nitrification and denitrification, and the third one was conventional nitrogen removal process (nitrification and denitrification).

View Article and Find Full Text PDF

For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software.

View Article and Find Full Text PDF