Publications by authors named "Rongjiao Zhu"

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Organic phosphorescence materials provide an opportunity to use triplets for lasing. However, population inversion based on phosphorescence is hard to establish, owing to low luminescent quantum efficiency and intensive optical loss. By comparison, thermally activated delayed fluorescence emitters exhibit excellent optical gain with the aid of the reverse intersystem crossing (RISC) process.

View Article and Find Full Text PDF

Microemulsion cleaning method has been proved to be an effective way to clean oily sludge with low interfacial tension and high solubilizing ability for non-miscible liquids. In this paper, the percentage range of the microemulsion in the formulation was obtained by studying phase behavior of the microemulsion. The response surface method was used to model and optimize the microemulsion to obtain the best formulation: n-BuOH content at 9.

View Article and Find Full Text PDF

Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe).

View Article and Find Full Text PDF

Porous hybrid Cu2O/polypyrrole nanoflakes have been synthesized from solid CuO nanoplate templates through the pyrrole-induced reductive transformation reaction at elevated temperature. The conversion mechanism involves the reductive transformation of CuO to Cu2O and the in situ oxidative polymerization of pyrrole to polypyrrole. In addition, the morphology of the as-converted nanohybrids depends on the shape of the CuO precursors.

View Article and Find Full Text PDF