Publications by authors named "Rongjiao Shao"

Drug transmission through the blood-brain barrier (BBB) is considered an arduous challenge for brain injury treatment following the return of spontaneous circulation after cardiac arrest (CA-ROSC). Inspired by the propensity of melanoma metastasis to the brain, B16F10 cell membranes are camouflaged on 2-methoxyestradiol (2ME2)-loaded reactive oxygen species (ROS)-triggered "Padlock" nanoparticles that are constructed by phenylboronic acid pinacol esters conjugated D-a-tocopheryl polyethylene glycol succinate (TPGS-PBAP). The biomimetic nanoparticles (BM@TP/2ME2) can be internalized, mainly mediated by the mutual recognition and interaction between CD44v6 expressed on B16F10 cell membranes and hyaluronic acid on cerebral vascular endothelial cells, and they responsively release 2ME2 by the oxidative stress microenvironment.

View Article and Find Full Text PDF

Background: Sepsis-induced myocardial injury is a serious complication of sepsis. QT prolongation is a proarrhythmic state which reflects myocardial injury in a group of heterogeneous disorders. However, the study on the clinical value of QT prolongation in sepsis is limited.

View Article and Find Full Text PDF

Uncontrolled inflammation storm induced by sepsis may lead to severe organ dysfunction and secondary immunosuppression, which is one of the main reasons for high mortality and prolonged hospitalization of septic patients. However, there is a lack of effective treatments for it at present. Here, we report an efferocytosis-inspired nanodrug (BCN@M) to treat sepsis and secondary immunosuppression via regulating the macrophage function.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is usually caused by coronary thrombosis. However, the short half-life, lack of targetability and inevitable ischemia/reperfusion injury secondary to revascularization, which characterizes tissue plasminogen activator (tPA) limit its thrombolytic efficacy for AMI. To address the targeted and site-specific delivery of tPA, the current study reports the construction of a thrombus-targeting and responsive biomimetic nanoparticle (PTPN) for spatiotemporal treatment of AMI.

View Article and Find Full Text PDF

Background: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship between the processes remain poorly understood. Recently, charged multivesicular body protein 2A (CHMP2A), a subunit of endosomal sorting complex required for transport (ESCRT), was shown to regulate phagophore closure, and its depletion led to the accumulation of autophagosomes and induced cell death. Here, we investigated whether CHMP2A-mediated autophagy was an underlying mechanism of AIM2-associated inflammation after CA-ROSC and explored the potential link between the AIM2 inflammasome and autophagy under ischemic conditions.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI.

View Article and Find Full Text PDF