Publications by authors named "Rongjian Liu"

Diethylhexyl phthalate (DEHP) is a typical environmental pollutant and poses a potential threat to organisms by disrupting the lipid metabolism. This study found that DEHP at environmental concentrations, led to lipid accumulation in female zebrafish, as indicated by significant increases in the content of total cholesterol, triglycerides and the lipid droplets, in a concentration-dependent manner. However, how DEHP induces the lipid accumulation remains poorly understood.

View Article and Find Full Text PDF

Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses. At the cellular level, psychedelics induce structural neural plasticity, exemplified by the drug-evoked growth and remodeling of dendritic spines in cortical pyramidal cells. A key question is how these cellular modifications map onto cell type-specific circuits to produce psychedelics' behavioral actions.

View Article and Find Full Text PDF

The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species.

View Article and Find Full Text PDF

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus.

View Article and Find Full Text PDF

Stability maintenance in systems refers to the capacity to preserve inherent stability characteristics. In this article, stability maintenance of large boolean networks (BNs) subjected to perturbations is investigated using a distributed pinning control (PC) strategy. The concept of edge removal as a form of perturbation is introduced, and several criteria for achieving global stability are established.

View Article and Find Full Text PDF

The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations.

View Article and Find Full Text PDF

Previous studies have reported the feminizing effects of 2,4-dichlorophenol (2,4-DCP) on zebrafish (). However, the effect of 2,4-DCP on the number of primordial germ cells (PGCs), an indicator for early sex differentiation, remains elusive. In the present study, Tg () zebrafish (GFP-labeled PGCs) were treated with 2,4-DCP (10, 20, and 40 μg/L) from 5 to 15 days postfertilization to explore the effect on PGC numbers and to elucidate associated molecular mechanisms.

View Article and Find Full Text PDF

The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S.

View Article and Find Full Text PDF

2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 μg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization.

View Article and Find Full Text PDF

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown.

View Article and Find Full Text PDF

Objective: Pediatric obsessive-compulsive disorder (OCD) sometimes appears rapidly, even overnight, often after an infection. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, or PANDAS, describes such a situation after infection with . PANDAS may result from induced autoimmunity against brain antigens, although this remains unproven.

View Article and Find Full Text PDF

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified.

View Article and Find Full Text PDF

We previously reported that the serotonergic system is important for the antidepressant-like effects of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, which produces rapid and long-lasting antidepressant effects in patients with major depressive disorder (MDD). In particular, selective stimulation of the 5-HT receptor in the medial prefrontal cortex (mPFC), as opposed to the somatic 5-HT autoreceptor, has been shown to play a critical role in the antidepressant-like actions of ketamine. However, the detailed mechanisms underlying mPFC 5-HT receptor-mediated antidepressant-like effects are not fully understood.

View Article and Find Full Text PDF

A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine.

View Article and Find Full Text PDF

Dysfunction of medial prefrontal cortex (mPFC) in association with imbalance of inhibitory and excitatory neurotransmission has been implicated in depression. However, the precise cellular mechanisms underlying this imbalance, particularly for GABAergic transmission in the mPFC, and the link with the rapid acting antidepressant ketamine remains poorly understood. Here we determined the influence of chronic unpredictable stress (CUS), an ethologically validated model of depression, on synaptic markers of GABA neurotransmission, and the influence of a single dose of ketamine on CUS-induced synaptic deficits in mPFC of male rodents.

View Article and Find Full Text PDF

The stabilization problem of Boolean control networks (BCNs) under pinning control is investigated in this article, and the set of pinned nodes is minimized. A BCN is a Boolean network with Boolean control inputs in it. When the given BCNs cannot realize stabilization under existing Boolean control inputs, pinning control strategy is introduced to make the BCNs achieve stabilization.

View Article and Find Full Text PDF

Currently available antidepressants have a delayed onset and limited efficacy, highlighting the need for new, rapid and more efficacious agents. Ketamine, an NMDA receptor antagonist, has emerged as a new rapid-acting antidepressant, effective even in treatment resistant patients. However, ketamine induces undesired psychotomimetic and dissociative side effects that limit its clinical use.

View Article and Find Full Text PDF

In this paper, the output feedback set stabilization problem for Boolean control networks (BCNs) is investigated with the help of the semi-tensor product (STP) tool. The concept of output feedback control invariant (OFCI) subset is introduced, and novel methods are developed to obtain the OFCI subsets. Based on the OFCI subsets, a technique, named spanning tree method, is further introduced to calculate all possible output feedback set stabilizers.

View Article and Find Full Text PDF

Preclinical studies demonstrate that rapid acting antidepressants, including ketamine require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity, endocrine and metabolic signals, notably the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a novel highly selective small molecule modulator of sestrin that penetrates the blood brain barrier.

View Article and Find Full Text PDF

Ketamine, a noncompetitive -methyl-d-aspartate (NMDA) receptor antagonist, produces rapid and long-lasting antidepressant effects in major depressive disorder (MDD) patients. (2,6)-Hydroxynorketamine [(2,6)-HNK], a metabolite of ketamine, is reported to produce rapid antidepressant effects in rodent models without the side effects of ketamine. Importantly, (2,6)-HNK does not block NMDA receptors like ketamine, and the molecular signaling mechanisms for (2,6)-HNK remain unknown.

View Article and Find Full Text PDF

In this brief, we study the delayed feedback stabilization problem for Boolean control networks (BCNs) with state delay. Using the semi-tensor product of matrices, some necessary and sufficient conditions are obtained. For the stabilization of BCNs, detailed procedure to construct the feedback controllers is also presented.

View Article and Find Full Text PDF

GLYX-13 is a putative NMDA receptor modulator with glycine-site partial agonist properties that produces rapid antidepressant effects, but without the psychotomimetic side effects of ketamine. Studies were conducted to examine the molecular, cellular, and behavioral actions of GLYX-13 to further characterize the mechanisms underlying the antidepressant actions of this agent. The results demonstrate that a single dose of GLYX-13 rapidly activates the mTORC1 pathway in the prefrontal cortex (PFC), and that infusion of the selective mTORC1 inhibitor rapamycin into the medial PFC (mPFC) blocks the antidepressant behavioral actions of GLYX-13, indicating a requirement for mTORC1 similar to ketamine.

View Article and Find Full Text PDF

Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine.

View Article and Find Full Text PDF

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites.

View Article and Find Full Text PDF

Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss. Clinical and preclinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions, but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses-1), an inhibitor of mTORC1 (mammalian target of rapamycin complex-1; ref.

View Article and Find Full Text PDF