Publications by authors named "Rongguo Sun"

Farmland mercury (Hg) pollution poses a significant threat to human health, but there is a lack of highly efficient phytoextraction for its remediation at present. This study investigates the impact of poly-γ-glutamic acid (γ-PGA) on the phytoextraction capabilities of Pennisetum giganteum (P. giganteum) in Hg-contaminated soil.

View Article and Find Full Text PDF

The foliage vegetables cultivated in greenhouse of Hg-contaminated regions suffer from severe Hg contamination issues because of soil elemental Hg (Hg(0)) release. Application of organic fertilizer (OF) is the indispensable part of farming, but its influences on soil Hg(0) release are unclear. A new method of thermal desorption coupled with cold vapor atomic fluorescence spectrometry was developed to measure transformations of Hg oxidation states to elucidate the impact mechanism of OF on Hg(0) release process.

View Article and Find Full Text PDF

Farmlands around the Hg mining areas have suffered from severe Hg contamination issues, triggering a phenomenon of high Hg content in crops, and subsequently threatening human health. In this study, ramie (Boehmeria nivea L.) assisted with poly-γ-glutamic acid (γ-PGA) was employed to remediate the Hg-contaminated soil through incubation experiments.

View Article and Find Full Text PDF

Conventional Hg visual sensors are unsustainable, hindering their practical application for improved water quality and health. In order to address this challenge, herein, N, S co-doped carbon nanodots (NS-CDs) were prepared and well characterized, presented the fluorescent monitoring for Hg over other metal ions with the limit of detection (LOD) of 0.47 µM.

View Article and Find Full Text PDF

Montmorillonite was modified with iron (Fe-MMT) for controlling mercury release across mercury-contaminated soil-air interface in greenhouse. With addition of Fe-MMT, although the root Hg contents in Brassica Pekinensis increased, the edible part (leaf) Hg concentrations decreased significantly, even achieved the Tolerance Limit of Mercury in Foods. The decrease of leaf Hg concentrations was attributed to the lower atmospheric Hg concentrations, which is caused by the lower soil Hg release fluxes.

View Article and Find Full Text PDF

The leaching of heavy metals (HMs) from lead-zinc mine tailings caused by natural precipitation and the subsequent migration and transformation characteristics in paddy soil were investigated using simulative experiments. The contents of HMs in the leachate from lead-zinc mine tailings increased with the increasing of liquid-to-solid ratio. Significant differences of contents under the same rainfall were found among different HMs (P < 0.

View Article and Find Full Text PDF

Caohai, a plateau wetland in Southwest China, is a national nature reserve providing protection for a variety of threatened and endangered species of migrant birds (e.g., the black-necked crane Grus nigricollis).

View Article and Find Full Text PDF

Epiphytic biofilms are complex matrix-enclosed communities comprising large numbers of bacteria and algae, which play an important role in the biogeochemical cycles in aquatic systems. However, little is known about the correlations that occur between these communities or the relative impact of environmental factors on their composition. In this study, epiphytic biofilms on three different aquatic plants were sampled in a typical plateau lake (Caohai, southwest China) in July and November of 2018.

View Article and Find Full Text PDF

Spatial distribution characteristics of heavy metal (Cd, Pb, Cr, Cu, Zn, and Hg) contents and their ecological risks in the farmland along the shoreline of the Caohai wetland were investigated. Incubation experiments were also conducted to characterize the emission of heavy metals across soil-water interface if the farmland was reclaimed to wetland. The results showed that spatial distribution characteristics of these heavy metal contents were significantly different.

View Article and Find Full Text PDF

Background: Influences of atorvastatin on atherosclerosis and glycemic metabolism may be related to its potential impact on circulating adiponectin, an adipocyte that exerts anti-inflammatory, ant-atherosclerotic, and anti-oxidative effects. However, results of previous randomized controlled trials (RCTs) were not consistent. We performed a meta-analysis of RCTs to systematic evaluate the influence of atorvastatin on circulating adiponectin.

View Article and Find Full Text PDF

Photoreduction characteristics of divalent inorganic mercury (Hg) in the presence of specific algae species are still not well known. Laboratory experiments were conducted in the present study to identify the effects of different concentrations of living/dead algae species, including Aphanizomenon flosaquae (AF) and Microcystis aeruginosa (MA), on the photoreduction rate of Hg under various light conditions. The experimental results showed that percentage reduction of Hg was significantly influenced by radiation wavelengths, and dramatically decreased with the presence of algae.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been reported to be crucial modulators in various heart diseases, including myocardial infarction (MI). LncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be highly expressed in MI samples. However, the mechanism and biological function of MALAT1 in myocardial infarction are still marked.

View Article and Find Full Text PDF

Hydrology and Water Resources Bureau of Guizhou Province, Guiyang 550002, China) Abstract: In order to explore the distribution characteristics of phytoplankton functional groups, eutrophication characteristics and response of phytoplankton functional groups to eutrophication in Xiaoguan Reservoir, phytoplankton and water samples were taken once a week from 25th July 2014 to 27th September 2014. The results showed that there were 22 phytoplankton functional groups, groups S1, D, J, B, G, MP, L₀, SN, X1, Y, Xph, F, T and W1 were comparatively common functional groups, Wherein, S1, D and J were the dominant functional groups. Weekly dynamics of phytoplankton functional groups were: S1-->S1-->S1-->S1-->S1--S1-->S1-->J/D/S1-->Sl1- >/1D.

View Article and Find Full Text PDF

Photodegradation (PD) of methylmercury (MMHg) is a key process of mercury (Hg) cycling in water systems, maintaining MMHg at a low level in water systems. However, we possess little knowledge of this important process in the Jialing River of Chongqing, China. In situ incubation experiments were thus performed to measure temporal patterns and influencing factors of MMHg PD in this river.

View Article and Find Full Text PDF

To investigate the effects of nano-TiO2 on mercury release and activation in sediment, flooding simulation experiments were conducted. The impacts of nano-TiO2 on total mercury and methylmercury concentrations in overlying water were analyzed. And the influences of nano-TiO2 on the migration and transformation of mercury were discussed based on changes of mercury speciation in sediment.

View Article and Find Full Text PDF

Submerged plants are a major source for the abnormal elevation of methylmercury in reservoir. Several specific plants (Echinochloa crusgalli, Cynodondactylon and Corn stover) were collected and inundated in a simulated aquatic environment in the laboratory for investigating the mercury (Hg) dynamics in plants and the release process into water, aiming to find out the properties of Hg dynamics of plants under inundation conditions and its impact on water body in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Area. The results showed that the contents of total mercury in several plants were in the range of 9.

View Article and Find Full Text PDF

To investigate the production, distribution and bioavailability of methylmercury (MMHg) in soil and plants of the water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted in laboratory. Results indicated that the level of total mercury (THg) in soil decreased with the lengthening of submerging time while that in water increased obviously. The level of MMHg in inundated soil and water increased, especially in the water treated by Echinochloa crusgalli and soils.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how low molecular weight organic acids from plant roots affect mercury redox reactions, focusing on tartaric, citric, and succinic acids.
  • Tartaric acid significantly enhanced the reduction of mercury, while citric acid inhibited it, and succinic acid showed mixed effects depending on its concentration.
  • All three acids initially oxidized mercury, but the order of their oxidation capacity was citric acid > tartaric acid > succinic acid, with subsequent reduction of the oxidized mercury occurring.
View Article and Find Full Text PDF

Laboratory incubation experiments were performed to identify diurnal characteristics of migration and transformation of mercury (Hg) and effects of nitrate (NO3(-), a hydroxyl radical donor by photolysis) in Jialing River, Chongqing, China. It is found that there are strong diurnal signals of [monomethylmercury (MMHg)] and [reactive Hg (RHg)] in sediment, pore water and overlying water, which suggest that solar radiation may be an important variable that involved in aquatic Hg cycling. Photo-degradation (PD) of MMHg plays a key role in Hg cycling in water systems, and the rates are measured to be 38.

View Article and Find Full Text PDF

Laboratory experiments were conducted to investigate the photo-reduction of HgCI2, under various light wavelengths and intensities. The whole process was tracked by changing Hg0 concentrations in argon and Hg0 flux was calculated for qualitative and quantitative analysis; the rate order was determined by both differential and integral methods. The principal results indicated: Higher mercury emission flux was observed under shorter light wavelength and stronger intensity, which shows the important role of photoenergy in the reaction.

View Article and Find Full Text PDF

To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively.

View Article and Find Full Text PDF

Total gaseous mercury fluxes of forested field soils in the subtropical forest zones, Chongqing, Southwestern China were continually monitored from April 2011 to March 2012 to provide insights into the characteristics of gaseous mercury flux with conifer-broadleaf forest covers. Samples were collected from surfaces of forest fields as the most representative terrestrial surfaces in Jinyun Mountain. Simultaneously, meteorological parameters at the soil level relating to GEM fluxes, such as soil temperature, air humidity, and solar radiation were analyzed, and variations of atmospheric GEM concentration were examined.

View Article and Find Full Text PDF

The speciation transformation, influencing factors, as well as bioavailability of mercury (Hg) in soil of the water-level-fluctuating zone in the Three Gorges Reservoir Area were simulated. The results showed that Hg in soil under alternative dry-wet condition could be transformed and released. The total Hg content in the soil was decreased by 28.

View Article and Find Full Text PDF

To study effects of nitrate (NO3(-)) on monomethylmercury (MMHg) photodecomposition (PD), laboratory experiments were conducted to investigate the role of NO3(-) in MMHg PD under various light radiations, and to examine effects of NO3(-) concentration gradients on MMHg PD rates and end products. We analysed the react processes according to Hg2+ concentration. The results indicated that in the reactor exposed to natural and ultraviolet radiation, and treated with NO3(-), the rates of MMHg PD were calculated to be 0.

View Article and Find Full Text PDF

To investigate the photochemical process of monomethylmercury (MMHg) in the water environment, laboratory experiments were conducted using artificial and visible light sources to confirm the effects of wavelength and light intensity on MMHg photodegradation (PD), and the reaction process of MMHg PD was discussed based on Hg(0) emission rate. The results indicated that Hg(0) was the end product of MMHg PD, and the light conditions had an effect on the rate constant of MMHg PD and Hg(0) flux. When the reactor was exposed to UV light conditions, the rate constant of MMHg PD increased with the decrease in wavelength and the increase in light intensity.

View Article and Find Full Text PDF