Light nonaqueous-phase liquids (LNAPLs) are the main source of organic pollution in soil and groundwater environments. The capillary zone, with varying moisture contents, is the last barrier against the infiltration of LNAPL pollutants into groundwater and plays an important role in their migration and transformation. However, the effect and mechanism of the moisture content in the capillary zone on LNAPL pollutant migration are still unclear.
View Article and Find Full Text PDFThe modified walnut shell biochar (WBC) was prepared through zinc-iron bimetallic oxide modification (ZF@WBC) at 600 °C under oxygen-limited conditions in this study. Through adsorption experiments, characterization analyses, and density functional theory (DFT) calculations, the adsorption properties of ZF@WBC to Pb (II) were investigated and the mechanism underlying such adsorption was elucidated. Characterization results showed that the surface area (375.
View Article and Find Full Text PDFThe widespread presence of antibiotics in aquatic environments, resulting from excessive use and accumulation, has raised significant concerns. A NiFe₂O₄/ZnIn₂S₄/Biochar (NFO/ZIS/BC) magnetic nanocomposite was successfully synthesized, demonstrating significantly enhanced electron-hole separation properties. Comprehensive investigations were conducted to evaluate the impact of various parameters, including catalyst mass, pH, and the presence of co-existing ions on the composite's performance.
View Article and Find Full Text PDFLeonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest.
View Article and Find Full Text PDFFor the purification of heavy metal wastewater, internal micro-electrolysis (IME) was considered as an effective method but some disadvantage greatly restricts its application. Electrocatalytic internal micro-electrolysis (ECIME) fluidized bed using iron-carbon particles was proposed to avoid disadvantaging of IME. The principal aim of this study was to investigate the enhanced removal characteristics, mechanism, and kinetic behavior of Cu(II) that none clear before.
View Article and Find Full Text PDFIn this study, a crosslinked yeast/β-cyclodextrin polymer (Y-β-CDP), for use as an effective adsorbent for removal Pb(ii) and Cd(ii) ions from aqueous solution, has been innovatively prepared by grafting β-cyclodextrin (β-CD) onto the surface of baker's yeast (BY) and thiomalic acid as a crosslinker. Several characterization techniques, such as SEM equipped with an EDS analyzer, FTIR, XRD, and XPS were employed characterize the Y-β-CDP. The impact of various operating parameters, such as pH, adsorbent dosage, initial concentration of metal ions, contact time and solution temperature, as well as adsorption kinetics, isotherms and thermodynamics were systematically investigated.
View Article and Find Full Text PDF