Publications by authors named "Rongfeng Jiang"

This study aims to assess the effectiveness and safety of fecal microbiota transplantation (FMT) combined with biofeedback for patients with mixed constipation. Patients who received biofeedback (biofeedback group, = 40) and those who received FMT combined with biofeedback (FMT combination group, = 45) were enrolled. Spontaneous bowel movements (SBMs) frequency, Bristol Stool Form Scale (BSFS), and Patient Assessment of Constipation Symptoms (PAC-SYM) score were analyzed to evaluate the effect of treatment.

View Article and Find Full Text PDF

The rapid specialization of livestock production in China has contributed to spatially decoupled crop and livestock production, leading to various environmental pollution issues. Some regional agro-environmental policies have recently promoted the coupling of specialized crop and livestock farms through cooperation. However, the environmental and economic performances of such cooperation remain unclear.

View Article and Find Full Text PDF

Minimal inhibitory concentration (MIC) is defined as the lowest concentration of an antimicrobial agent that can inhibit the visible growth of a particular microorganism after overnight incubation. Clinically, antibiotic doses for specific infections are determined according to the fraction of MIC. Therefore, credible assessment of MICs will provide a physician valuable information on the choice of therapeutic strategy.

View Article and Find Full Text PDF

Accumulating evidence has suggested the importance of gut microbiota in the development of type 2 diabetes mellitus (T2DM). In the present study, 40 patients with T2DM were treated with liraglutide for 4 months. Feces samples and clinical characteristics were collected from these 40 T2DM patients before and after the liraglutide treatment.

View Article and Find Full Text PDF

Heavy metals removal from aqueous phase by adsorption technique has recently attracted a considerable interest. Although various adsorbing materials have been developed, introducing more functional groups is considered as the most efficient way to promote the adsorption capacity of the selected adsorbent. However, this approach is usually limited in costly modification precursor and unguaranteed loading efficacy.

View Article and Find Full Text PDF

To promote the rational application of nitrogen fertilizer for winter wheat under rice-wheat rotation in the Yangtze River Basin, we examined the effects of nitrogen application rates (0, 120, 210, 300 kg·hm, expressed as N, N, N, and N respectively) on soil nitrate content, nitrogen balance of soil-plant system and yield. The results showed that soil nitrate content increased with increasing nitrogen application rates. Under different nitrogen application treatments, all the nitrate was significantly transfered to the 60 cm soil layer till jointing stage.

View Article and Find Full Text PDF

To promote the rational application of nitrogen fertilizer in winter wheat after rice stubble, the effects of nitrogen application rate (0, 150, 225, 300 kg·hm, expressed as N, N, N, N) on nitrogen recovery, residue, loss and grain yield were examined using field N tracer technology. The results showed that with the increases of application rate, nitrogen accumulation from different sources significantly increased while nitrogen recovery significantly decreased. The accumulation of basal nitrogen in plants reached the peak during overwintering stage to jointing stage, while the accumulation of topdressing nitrogen peaked between jointing to flowering stage.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how different extraction times (6, 12, and 24 hours) affect the composition and quality of compost tea derived from pig manure compost.
  • Results showed that shorter extraction times (6 and 12 hours) led to higher protein content and humic-like substances, while the 12-hour extraction produced the highest aromaticity and molecular weight.
  • The findings suggest that shorter extraction times (6 and 12 hours) are preferable for producing compost tea with better quality and stronger copper binding capacity.
View Article and Find Full Text PDF

The environmental risks posed by heavy metals (HMs) in animal manure are increasing because of the use of trace metals as additives in feedstuffs. Manure samples were collected, and published literature was reviewed in this study to systematically analyze the HMs content in animal manure and compare the results to different sources of animal manures. Results show that the distribution of HMs content in animal manure was skewed.

View Article and Find Full Text PDF

A large amount of organic fertilizer application could be accompanied by soil contamination caused by trace heavy metals. A field experiment was carried out in this study to examine the accumulation and availability of copper (Cu) and zinc (Zn) in soil, and their uptake by rice under continuous application of chicken manure, pig manure and sewage sludge. Results showed that after four years of chicken manure, pig manure and sewage sludge application, the soil Cu accumulation rates were 0.

View Article and Find Full Text PDF

Global expectation for sustainability has prompted the transition of practices in wastewater treatment plants toward not only waste management but also energy and nutrient recovery. It has been shown that low-temperature hydrotherm (HT) treatment can enhance downstream biogas production via anaerobic digestion (AD). Yet, because the application of combined HT and AD is still at an early stage, a systematic understanding of the dynamic speciation evolution of important elements is still lacking.

View Article and Find Full Text PDF

Phosphorus (P) recovery from digestate has attracted considerable interest. In this study, hydrothermal processes in combination with struvite crystallization were performed to promote P solubilization and capture from digestate; its potential as a phosphate-based fertilizer was also investigated. Hydrothermal treatment with HCl and HO showed good results for the solubilization of organic and slightly soluble P, and achieved the lowest input energy need (768 kWhkg).

View Article and Find Full Text PDF

Developing sustainable food systems is essential, especially for emerging economies, where food systems are changing rapidly and affect the environment and natural resources. We explored possible future pathways for a sustainable food system in China, using multiple environmental indicators linked to eight of the Sustainable Development Goals (SDGs). Forecasts for 2030 in a business as usual scenario (BAU) indicate increases in animal food consumption as well as increased shortages of the land available and the water needed to produce the required food in China.

View Article and Find Full Text PDF

Swine manure is potentially harmful to the environment but is also a readily accessible local source of phosphorus (P) for agricultural use. Decreasing the environmental impact of swine manure and recovering P from swine manure have been a challenge for a long time. In this study, an integrated process involving ultrasound/HO digestion, struvite crystallization, and ferric oxide hydrate (HFO)/biochar adsorption was used to recover P from swine manure.

View Article and Find Full Text PDF
Article Synopsis
  • Sustainable farming practices were introduced to 20.9 million smallholder farmers in China, improving crop yields by 10.8-11.5% while reducing nitrogen fertilizer use by 14.7-18.1%.
  • A collaborative network of over 1,150 researchers and extension agents effectively engaged these farmers across 452 counties, resulting in increased food production and decreased pollution.
  • The enhanced practices led to significant economic benefits, with a net grain output valued at US$12.2 billion, and a notable reduction in greenhouse gas emissions related to crop production.
View Article and Find Full Text PDF

Phosphorus (P) is an essential nutrient for all organisms, thus playing unique and critical roles at the food-energy-water nexus. Most P utilized by human activities eventually converges into various solid biowastes, such as crop biomass, animal manures, and sewage sludges. Therefore, integration of efficient P recovery practices into solid biowaste management will not only significantly reduce the dependence on limited geological P resources but also reduce P runoff and related water contamination issues associated with traditional waste management strategies.

View Article and Find Full Text PDF

Sustainably feeding the world's growing population is a challenge, and closing yield gaps (that is, differences between farmers' yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare.

View Article and Find Full Text PDF

Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor.

View Article and Find Full Text PDF

A number of studies of waste-activated sludge (WAS) pretreatments, aimed at releasing phosphorus (P) from WAS and increasing the amount of P that can be recovered, have been performed. Here, a microwave-assisted digestion and NaOH treatment (MWs & NaOH) coupled crystallizing struvite, to promote the solubilization, transformation, and recovery of P from WAS, is proposed. Microwaves (MWs) can cause cavities to form in WAS, weakening the bonds between extracellular polymeric substances and the solid phase.

View Article and Find Full Text PDF

Over the past five decades, Chinese grain production has increased 4-fold, from 110 Mt in 1961 to 557 Mt in 2014, with less than 9% of the world's arable land feeding 22% of the world's population, indicating a substantial contribution to global food security. However, compared with developed economies, such as the USA and the European Union, more than half of the increased crop production in China can be attributed to a rapid increase in the consumption of chemicals, particularly fertilizers. Excessive fertilization has caused low nutrient use efficiency and high environmental costs in grain production.

View Article and Find Full Text PDF

This study used a [(13)C]DNA stable isotope probing (SIP) technique to elucidate a direct pathway for the translocation of (13)C-labeled photoassimilate from maize plants to extraradical mycelium-associated phosphate-solubilizing bacteria (PSB) that mediate the mineralization and turnover of soil organic phosphorus (P) in the hyphosphere. Inoculation with PSB alone did not provide any benefit to maize plants but utilized the added phytate-P to their own advantage, while inoculation with Rhizophagus irregularis alone significantly promoted shoot biomass and P content compared with the control. However, compared with both sole inoculation treatments, combined inoculation with PSB and R.

View Article and Find Full Text PDF

Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects.

View Article and Find Full Text PDF

Unlabelled: Levels of cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), iron (Fe), and zinc (Zn) were investigated in 285 samples of 9 species of edible fungi (Lentinus edodes, Auricularia auricula, Pleurotus ostreatus, Tremella fuciformis, Flammulina velutipes, Agrocybe chaxinggu, Armillaria mellea, Agaricus bisporus, and Pholiota nameko), which were collected from markets in Beijing, China. In addition, edible fungi and culture substrates were collected from 7 cultivation bases to examine the role of the substrate in trace metal accumulation. Trace metal concentrations were determined on a dry weight basis.

View Article and Find Full Text PDF

Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid.

View Article and Find Full Text PDF

Iron plaque on root surfaces greatly influenced selenium uptake and played different roles in selenite and selenate uptake. Iron plaque commonly forms on rice root surfaces under flooded conditions, but little is known about the relationship between iron plaque and selenium (Se) accumulation. Here, we investigate the effects of iron plaque on Se uptake by and translocation within rice (Oryza sativa) seedlings, and the kinetics of selenite and selenate influx into rice roots (with or without iron plaque) were determined in short-term (30 min) experiments.

View Article and Find Full Text PDF