A series of thiophene-benzenesulfonamide derivatives was designed and synthesized by exploring the structure-activity relationship of lead compounds 2,3-disubstituted thiophenes 25a and 297F as antituberculosis agents, which displayed potent antimycobacterial activity against drug-susceptible and clinically isolated drug-resistant tuberculosis. In particular, compound 17b, which had improved activity (minimum inhibitory concentration of 0.023 μg/mL) compared with the lead compounds, displayed good intracellular antimycobacterial activity in macrophages with a reduction of 1.
View Article and Find Full Text PDFIn this study, we report the design and synthesis of a series of novel thiophene-arylamide compounds derived from the noncovalent decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) inhibitor TCA1 through a structure-based scaffold hopping strategy. Systematic optimization of the two side chains flanking the thiophene core led to new lead compounds bearing a thiophene-arylamide scaffold with potent antimycobacterial activity and low cytotoxicity. Compounds , , , and exhibited potent activity against both drug-susceptible (minimum inhibitory concentration (MIC) = 0.
View Article and Find Full Text PDFThe one-pot synthesis of quinazoline-2,4-diones was developed in the presence of 4-dimethylaminopyridine (DMAP) by metal-free catalysis. The commercially available (Boc)O acted as a key precursor in the construction of the 2-position carbonyl of quinazolinediones. The -methoxybenzyl (PMB)-activated heterocyclization could smoothly proceed at room temperature instead of the microwave condition.
View Article and Find Full Text PDF