Publications by authors named "Rongfa Li"

Crop diversification contributes to agricultural productivity and resources efficient utilization. However, whether cultivar mixtures in maize affects soil bacterial community, nutrient uptake, plant growth and yield remains unknown. A two-year lysimetric experiment was conducted using two maize cultivars (LY16 and JS501) with different root system architectures planted in monoculture or in mixture under normal fertilization (NF), reduced fertilization (RF) or no addition of fertilizer (CK) and was assessed at the silking stages.

View Article and Find Full Text PDF

Increasing crop yields to ensure food security while also reducing agriculture's environmental impacts to ensure green sustainable development are great challenges for global agriculture. Plastic film, widely used to improve crop yield, also creates plastic film residue pollution and greenhouse gas emissions that restricts the development of sustainable agriculture. So, one of those challenges is to reduce plastic film use while also ensuring food security, and thus promote green and sustainable development.

View Article and Find Full Text PDF

Background: Soil salt stress is a problem in the world, which turns into one of the main limiting factors hindering maize production. Salinity significantly affects root physiological processes in maize plants. There are few studies, however, that analyses the response of maize to salt stress in terms of the development of root anatomy and respiration.

View Article and Find Full Text PDF

Quantifying the relationships of maize yield and nitrogen use efficiency (NUE) to inherent soil productivity (ISP) could provide a theoretical basis for implementing strategies that concurrently narrow the yield gap, increase NUE, and improve soil quality. A field study under irrigation conditions was conducted at five locations with large differences in ISP (estimated by maize grain yield without using fertilizers) across various ecological regions in Inner Mongolia, China. Our results showed that the changes in maize yield and nitrogen partial factor productivity (PFP) to ISP followed a linear-plateau model, with a common inflection point.

View Article and Find Full Text PDF

Background: The minichromosome maintenance (MCM) protein complex is important for DNA replication. Moreover, the expression of specific MCM complex components has been associated with the survival of hepatocellular carcinoma (HCC) patients. However, the expression and functional roles of minichromosome maintenance complex component 4 (MCM4) in HCC development and progression have not yet been explored.

View Article and Find Full Text PDF

In China, the most common grain crop is maize (). The increasing pressure to meet the food demands of its growing population has pushed Chinese maize farmers toward an excessive use of chemical fertilizers, a practice which ultimately leads to a massive waste of resources and widespread environmental pollution. As a result, increasing the yield and improving the nitrogen (N) use efficiency of maize has become a critical issue for agriculture in China.

View Article and Find Full Text PDF

Improved the utilization of fertilizer while maintaining the increased of grain yield was the focus of Chinese researchers. Nutrient uptake, distribution, and remobilization are important factors affecting the fertilizer utilization and grain yield of maize. This study aimed to provide a theoretical and practical basis for science-based, high-yielding, and high-efficiency cultivation practices by examining differences in biomass and nutrient uptake, distribution, and remobilization characteristics under three cultivation patterns.

View Article and Find Full Text PDF