Combined in situ analysis of oceanic CO concentrations and diverse C and O isotope characteristics can offer a unique perspective with multiple isotopic tracing dimensions for identifying marine biogeochemical processes. Applying this strategy in marine environments is urgently required, yet it faces inherent challenges in terms of existing analytical methods and instruments, e.g.
View Article and Find Full Text PDFMosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.
View Article and Find Full Text PDFResearch on the transient variation processes of oceanic dissolved CO makes significant sense because of the complexity and dynamics of the marine environment. Yet, it is inherently challenging due to the limitation of the response performance of in situ sensors. Here, we report a novel system solution capable of providing high-performance detection with a seconds-scale response, sub-ppmv level precision, and 3000 m rated depth.
View Article and Find Full Text PDFThe detection of dissolved gases in seawater plays an important role in oceanic observations and exploration. As a potential technique for oceanic applications, Raman spectroscopy has been successfully applied in hydrothermal vents and cold seep fluids, but it has not yet been used in common seawater due to the technique's lower sensitivity. In this work, we present a highly sensitive underwater in situ Raman spectroscopy system for dissolved gas detection in common seawater.
View Article and Find Full Text PDFContinuous observation of aquatic pCO2 at the ocean surface, with a sensitive response time and high spatiotemporal resolution, is essential for research into the carbon biogeochemical cycle. In this work, a portable tunable diode laser absorption spectroscopy (TDLAS) system for dissolved CO detection in surface seawater, coupled with a home-made headspace equilibrator, allowing real time underway measurements, is described. Both the optical detection part and sample extraction part were integrated together into a compact chamber.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) signals in water always suffer strong pulse-to-pulse fluctuations that result in poor stability of the spectrum. In this work, a spectrum normalization method based on acoustic signals measured by a hydrophone immersed in water was developed and compared with laser energy normalization. The characteristics of the acoustic signals were studied first, and the correlations between the acoustic signals and LIBS spectra were analyzed.
View Article and Find Full Text PDFproclotting enzymes (PCEs) belong to the clip domain serine protease (clip-SP) family, which is a characteristic protease family in arthropods. was previously reported to regulate egg production and development in female , but its role in male is unclear. In the present study, qPCR analysis showed that was expressed in three different tissues (gut, testis and fat body).
View Article and Find Full Text PDFIn recent years, the investigation and exploitation of hydrothermal region and polymetallic mineral areas has become a hot topic. The emergence of underwater vehicle platforms has made it possible for new chemical sensors to be applied in marine in-situ detection. Laser-induced breakdown spectroscopy (LIBS), with its advantages of rapid real-time analysis, sampling without pretreatment, simultaneous multi-element detection and stand-off detection, has great potential in marine applications.
View Article and Find Full Text PDFThe knowledge on the laser-induced plasma emission in water at high pressures is essential for the application of laser-induced breakdown spectroscopy (LIBS) in the deep-sea. In this work, we investigate the spectral features of ionic, atomic and molecular emissions for the plasma in water at different pressures from 1 to 40 MPa. By comparing between the time-resolved spectra and shadowgraph images, we demonstrate that the dynamics of the cavitation bubble at high pressures plays a key role on the characterization of plasma emission.
View Article and Find Full Text PDFDepth profiling investigation plays an important role in studying the dynamic processes of the ocean. In this paper, a newly developed hyphenated underwater system based on multi-optical spectrometry is introduced and used to measure seawater spectra at different depths with the aid of a remotely operated vehicle (ROV). The hyphenated system consists of two independent compact deep-sea spectral instruments, a deep ocean compact autonomous Raman spectrometer and a compact underwater laser-induced breakdown spectroscopy system for sea applications (LIBSea).
View Article and Find Full Text PDFIt has been proved that the detection of laser-induced breakdown spectroscopy (LIBS) could be improved by the flame. In this work, we applied flame enhanced LIBS for the detection of elements in water, while the flame was generated from the mixture of alcohol and aqueous solution. In the measurements, the flame is functioned as an assistance to enhance the LIBS detection, and also worked as a sampling way for the solution.
View Article and Find Full Text PDFClip domain serine proteases play vital roles in various innate immune functions and in embryonic development. proclotting enzymes (PCEs) belong to this protease family. was reported to be involved in innate immunity, whereas the role of other is unclear.
View Article and Find Full Text PDFThe effects of salinity on underwater laser-induced breakdown spectroscopy (LIBS) were investigated with salinities ranging from 2‰ to 50‰. Both spectroscopic and fast imaging techniques were used to observe plasma emission. It was shown that as the salinity increased, emission intensities of the atomic lines increased, while intensities of the ionic lines were suppressed.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) has been successfully applied to ocean exploration, but the changes in marine environmental factors could have an important impact on the LIBS signals. The aim of the research is to investigate the ambient water temperature effects on laser-induced plasma in bulk water. Both the spectroscopic and fast imaging techniques are used to observe the plasma emission with the temperatures in the range of 5-60 ℃.
View Article and Find Full Text PDFIn recent years, Raman spectroscopy techniques have been successfully applied to the area of deep-sea exploration. However, there are still some problems impeding the further application of Raman systems. For example, the large size of an underwater Raman system makes it difficult to deploy on the underwater vehicle.
View Article and Find Full Text PDFIn recent years, cabled ocean observation technology has been increasingly used for deep sea in situ research. As sophisticated sensor or measurement system starts to be applied on a remotely operated vehicle (ROV), it presents the requirement to maintain a stable condition of measurement system cabin. In this paper, we introduce one kind of ROV-based Raman spectroscopy measurement system (DOCARS) and discuss the development characteristics of its cabin condition during profile measurement process.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) is a new technique for seashell elemental analysis, and now that application is in rapid development. In this work, LIBS was applied for scallop shell [Chlamys (Azumapecten) farreri] analysis using the element ratio Sr/Ca, and the analytical result was compared under objective lens (OL) focusing and single lens (SL) focusing, respectively. It is interesting to find that, under the two focusing arrangements, the ratio (Sr/Ca) variation on the shell cross section performed completely differently, while in technical aspects, the two focusing arrangements presented almost the same characteristics in a standard sample.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) has drawn more attention as a new technique for in situ detection of seawater, especially for hydrothermal areas. In order to evaluate the focusing geometry effect on laser-induced plasma in bulk water, four focusing arrangements were tried out with a single lens as well as with a double-lens combination. We demonstrated that, for the same transmission distance in water, the double-lens combination with shorter effective focal length generated more condensed plasma, as shown by the spectroscopic and fast imaging results.
View Article and Find Full Text PDFRaman spectroscopy has great potential as a tool in a variety of hydrothermal science applications. However, its low sensitivity has limited its use in common sea areas. In this paper, we develop a near-concentric cavity-enhanced Raman spectroscopy system to directly detect bicarbonate in seawater for the first time.
View Article and Find Full Text PDFThe exploitation and research of deep-sea hydrothermal vent has been an issue of great interest in ocean research in recent years. Laser-induced breakdown spectroscopy (LIBS) has great potential for ocean application due to the capabilities of stand-off, multiphase, and multielement analysis. In this work, a newly developed compact 4000 m rated LIBS system (LIBSea) is introduced with preliminary results of sea trials.
View Article and Find Full Text PDFThe detection of dissolved gases in seawater plays an important role in ocean observation and exploration. As a potential technique for oceanic applications, Raman spectroscopy has already proved its advantages in the simultaneous detection of multiple species during previous deep-sea explorations. Due to the low sensitivity of conventional Raman measurements, there have been many reports of Raman applications on direct seawater detection in high-concentration areas, but few on undersea dissolved gas detection.
View Article and Find Full Text PDF