Publications by authors named "Rongchen Shi"

Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.

View Article and Find Full Text PDF

Lipid metabolic reprogramming is closely related to tumor progression with the mechanism not fully elucidated. Here, we report the immune-regulated role of lanosterol synthase (LSS), an essential enzyme in cholesterol synthesis. Database analysis and clinical sample experiments suggest that LSS was lowly expressed in colon and breast cancer tissues, which indicates poor prognosis.

View Article and Find Full Text PDF

Cholesterol, an important lipid molecule of organisms, is involved in the formation of cell membrane structure, bile acid metabolism and steroid hormone synthesis, playing an important role in the regulation of cell structure and functions. In recent years, a large number of studies have shown that cholesterol metabolism is reprogrammed during tumor formation and development. In addition to directly affecting the biological behavior of tumor cells, cholesterol metabolic reprogramming also regulates the antitumor activity of immune cells in the tumor microenvironment.

View Article and Find Full Text PDF

5-aza-2'-deoxycytidine (5Aza), a DNA methyltransferase (DNMT) inhibitor, could activate tumor adaptive immunity to inhibit tumor progression. However, the molecular mechanisms by which 5Aza regulates tumor immune microenvironment are still not fully understood. The role of 5Aza in immune microenvironment of peritoneal carcinomatosis (PC) of colorectal cancer (CRC) was investigated.

View Article and Find Full Text PDF

Tumor associated macrophages (TAMs) are one of the most common types of stromal cells in solid tumors. They are closely related to the immunosuppressive status of tumor microenvironment and potentiate the malignant progress of tumors. Studies have shown that metabolism in tumor associated macrophages has been reprogrammed and involved in the regulation of their own polarization and corresponding functions and phenotypes.

View Article and Find Full Text PDF

Peritoneal carcinomatosis (PC) of colorectal cancer (CRC) is a terminal phase of malignancy with no effective strategies for the prevention of this condition. Here we established PC models in mice by intraperitoneal engraftment of CRC cells and revealed an unexpected role for a high-fat diet (HFD) in preventing metastatic seeding in the visceral fat. Mechanistically, the HFD stimulated the activation of adipose tissue macrophages (ATMs) toward an M1-like phenotype and enhanced ATM tumor phagocytosis in a TLR4-dependent manner.

View Article and Find Full Text PDF

Tumor microenvironment is a special environment for tumor survival, which is characterized by hypoxia, acidity, nutrient deficiency, and immunosuppression. The environment consists of the vasculature, immune cells, extracellular matrix, and proteins or metabolic molecules. A large number of recent studies have shown that not only tumor cells but also the immune cells in the tumor microenvironment have undergone metabolic reprogramming, which is closely related to tumor drug resistance and malignant progression.

View Article and Find Full Text PDF

Lipid metabolic reprogramming plays an essential role in regulating the progression of colorectal cancer (CRC). However, the effect of lysophosphatidic acid (LPA) metabolism on CRC development is incompletely characterized. Here, we compared the mRNA levels of human CRC tissues to those of paracarcinoma tissues and focused on the notably enriched LPA metabolic pathways.

View Article and Find Full Text PDF

Metabolic reprogramming in tumor-associated macrophages (TAM) is associated with cancer development, however, the role of macrophage triglyceride metabolism in cancer metastasis is unclear. Here, we showed that TAMs exhibited heterogeneous expression of abhydrolase domain containing 5 (ABHD5), an activator of triglyceride hydrolysis, with migratory TAMs expressing lower levels of ABHD5 compared with the nonmigratory TAMs. ABHD5 expression in macrophages inhibited cancer cell migration in xenograft models and in genetic cancer models.

View Article and Find Full Text PDF

Colorectal cancer (CRC) usually gives rise to transcoelomic spread and ultimately causes peritoneal carcinomatosis (PC). However, mechanism studies, especially the immunological basis of colorectal PC, are rarely revealed due to lack of a suitable PC model. Here we selected a mouse colorectal cancer cell line MC-38 for intraperitoneal inoculation in the C57BL/6 mice to mimic the development of colorectal PC.

View Article and Find Full Text PDF

Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs.

View Article and Find Full Text PDF

Background: Chronic inflammation is causally linked to the carcinogenesis and progression of most solid tumors. LPTS is a well-identified tumor suppressor by inhibiting telomerase activity and cancer cell growth. However, whether and how LPTS is regulated by inflammation signaling is still incompletely elucidated.

View Article and Find Full Text PDF

Background: Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcription factor with multiple functions operating in a variety of organs, including the brain. Recent studies have revealed that AhR played a functional role in traumatic injuries. This paper aims to study the expression of AhR during the early phase following a traumatic brain injury (TBI) in rat brains by immunohistochemistry.

View Article and Find Full Text PDF

Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution.

View Article and Find Full Text PDF

The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance.

View Article and Find Full Text PDF

Erythropoietin (EPO) has been identified as being crucial for obesity modulation; however, its erythropoietic activity may limit its clinical application. EPO-derived Helix B-surface peptide (pHBSP) is nonerythrogenic but has been reported to retain other functions of EPO. The current study aimed to evaluate the effects and potential mechanisms of pHBSP in obesity modulation.

View Article and Find Full Text PDF

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies. Macrophages are the major immune cells in peripheral nerves and may exert tissue-damage or tissue-protective activity during EAN. While considered to define a subpopulation of T lymphocytes, CD8 expression has been found on certain macrophages that show cytotoxic effects.

View Article and Find Full Text PDF

ARA290 is a nonerythropoietic analog of erythropoietin (EPO) containing 11 amino acids which provides the anti-inflammatory and neuroprotective effects of EPO without stimulating hematopoiesis. Here we studied the therapeutic effects of ARA290 in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Therapeutic (from Day 7 to Day 18 or from Day 9 to Day 19) administration of ARA290 (35, 70 μg/kg, intra-peritoneal) to EAE rats once daily significantly reduced the severity and shortened the duration of clinical score, reduced the accumulation of inflammatory cells in EAE spinal cords and suppressed mRNA levels of interleukin-1β (IL-1β), IL-17, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), matrix metalloproteinase 9 (MMP9) and transcription factor T-bet in spinal cords of EAE rats.

View Article and Find Full Text PDF

Experimental autoimmune neuritis (EAN) is a helper T cell-mediated autoimmune demyelinating inflammatory disease of the peripheral nervous system that serves as an animal model for human Guillain-Barre syndrome. Curcumin, a naturally occurring polyphenolic phytochemical isolated from the medicinal plant Curcuma longa, has anti-inflammatory activities. Here we investigated the therapeutic effects and potential mechanisms of curcumin in EAN rats.

View Article and Find Full Text PDF