Publications by authors named "Rongchao Cheng"

Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on hydrate nucleation and growth in sediment environments was evaluated via hydrate formation inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis integrating various methods.

View Article and Find Full Text PDF

To control the filtration loss of drilling fluids in salt-gypsum formations, a novel type of zwitterionic polymer gel (DNDAP) was synthesized by free radical polymerization, which was used as a salt- and calcium-resistant fluid loss reducer for water-based drilling fluids (WBDF). DNDAP was prepared with N, N-dimethylacrylamide (DMAA), N-vinylpyrrolidone (NVP), Diallyl dimethyl ammonium chloride (DMDAAC), 2-acrylamide-2-methylpropaneonic acid (AMPS), and isopentenol polyether (TPEG) as raw materials. Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (H-NMR) were used to characterize the composition and structure of the DNDAP copolymer.

View Article and Find Full Text PDF

In response to the current problem that micron-scale plugging agents cannot effectively plug shale nanopores and fractures, tetrameric poly(VS-St-BMA-BA) nanoparticles were synthesized by the Michael addition reaction using sodium vinyl sulfonate, styrene, butyl methacrylate, and butyl acrylate as raw materials. The nanoparticles poly(VS-St-BMA-BA) were characterized by infrared spectroscopy, particle size analysis, and thermogravimetric analysis. The particle size distribution of poly(VS-St-BMA-BA) at room temperature ranged from 62.

View Article and Find Full Text PDF

MicroRNA (miRNA) and mitofusin-2 (Mfn2) are important in the development of cardiac hypertrophy, but the target relationship and mechanism associated with Ca handling between SR and mitochondria under hypertrophic condition is not established. Mfn2 expression, Mfn2-mediated interorganelle Ca cross-talk, and target regulation by miRNA-20b (miR-20b) were evaluated using animal/cellular hypertrophic models with state-of-the-art techniques. The results demonstrated that Mfn2 was downregulated and miR-20b was upregulated upon the target binding profile under hypertrophic condition.

View Article and Find Full Text PDF

Purpose: Coronary flow reserve (CFR) is recognized as an indicator of myocardial perfusion. The aim of this study was to assess the relationship between CFR in the non-infarcted myocardium and the incidence of major adverse cardiac events (MACEs).

Materials And Methods: 100 consecutive patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI) were enrolled in the present study, and divided into MACE and non-MACE groups according to the incidence of 12-month MACEs.

View Article and Find Full Text PDF

Purpose: Coronary flow reserve (CFR) in the non-infarcted myocardium is often impaired following acute myocardial infarction (AMI). However, the clinical significance of CFR in the non-infarcted myocardium is not fully understood. The objective of the present study was to assess whether a relationship exists between CFR and left ventricular remodeling following AMI.

View Article and Find Full Text PDF

Background: Global methylation level in blood leukocyte DNA has been associated with the risk of coronary heart disease (CHD), with inconsistent results in various populations. Similar data are lacking in Chinese population where different genetic, lifestyle and environmental factors may affect DNA methylation and its risk relationship with CHD.

Objectives: To examine whether global methylation is associated with the risk of CHD in Chinese population.

View Article and Find Full Text PDF