Publications by authors named "Rongbin Su"

Objective: Local recurrence, distant metastasis, and perineural invasion (PNI) viciously occur in salivary adenoid cystic carcinoma (SACC), resulting in a poor prognosis. This study aimed to explore the mechanism by which circular RNA RNF111 (circ-RNF111) regulates PNI in SACC by targeting the miR-361-5p/high mobility group box 2 (HMGB2) axis.

Method: Circ-RNF111 and HMGB2 were highly expressed in SACC specimens, while miR-361-5p was underexpressed.

View Article and Find Full Text PDF

The emerging hybrid integrated quantum photonics combines the advantages of different functional components into a single chip to meet the stringent requirements for quantum information processing. Despite the tremendous progress in hybrid integrations of III-V quantum emitters with silicon-based photonic circuits and superconducting single-photon detectors, on-chip optical excitations of quantum emitters via miniaturized lasers towards single-photon sources (SPSs) with low power consumptions, small device footprints, and excellent coherence properties is highly desirable yet illusive. In this work, we present realizations of bright semiconductor SPSs heterogeneously integrated with on-chip electrically-injected microlasers.

View Article and Find Full Text PDF

In this work, we successfully achieved wafer-scale low density InAs/GaAs quantum dots (QDs) for single photon emitter on three-inch wafer by precisely controlling the growth parameters. The highly uniform InAs/GaAs QDs show low density of μ0.96/μm2 within the radius of 2 cm.

View Article and Find Full Text PDF

Photons that have a helical phase front, that is, twisted photons, can carry a discrete, in principle, unlimited, but quantized amount of orbital angular momentum (OAM). Hence, twisted single photons constitute a high-dimensional quantum system with information-processing abilities beyond those of two-level single-photon qubits. To date, the generation of single photons carrying OAM has relied on a non-linear process in bulk crystals, for example, spontaneous parametric down-conversion, which limits both the efficiency and the scalability of the source.

View Article and Find Full Text PDF

Objective: To evaluate the presence of Brugada electrocardiogram (ECG) pattern, clinical characteristics, treatment, and long-term prognosis of Brugada syndrome in southern Chinese population.

Methods: This prospective study consisted of a consecutive series of patients with diagnostic coved type I Brugada ECG pattern at baseline between January 2007 and February 2020. Histories of symptoms including ventricular tachycardia (VT)/ventricular fibrillation (VF) episode, syncope, and family history of Brugada Syndrome (BrS) or unexplained sudden cardiac death were collected.

View Article and Find Full Text PDF

Background: To evaluate the role of Tp-e and (Tp-e)/QT ratio in differentiating benign ventricular premature complex (VPC) and malignant polymorphic ventricular tachycardia (PVT).

Methods: From January 2017 to December 2017, patients with documented polymorphic ventricular tachycardia (PVT) or ventricular fibrillation (VF) were consecutive included and classified as PVT/VF group. Sixty age- and sex-matched healthy individuals were recruited as comparative control and subdivided into non-VPC and VPC group.

View Article and Find Full Text PDF

The semiconductor quantum dot (QD) has been successfully demonstrated as a potentially scalable and on-chip integration technology to generate the triggered photon streams that have many important applications in quantum information science. However, the randomicity of these photon streams emitted from the QD seriously compromises its use and especially hinders the on-demand manipulation of the spin states. Here, by accurately integrating a QD and its mirror image onto the two foci of a bifocal metalens, we demonstrate the on-demand generation and separation of the spin states of the emitted single photons.

View Article and Find Full Text PDF

Abscisic acid (ABA) plays important roles in multiple physiological processes, such as plant response to stresses and plant development. The ABA receptors pyrabactin resistance (PYR)/ PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) play a crucial role in ABA perception and signaling. However, little is known about the details regarding PYL family genes in Brassica juncea var.

View Article and Find Full Text PDF

The generation of high-quality entangled photon pairs has been a long-sought goal in modern quantum communication and computation. So far, the most widely used entangled photon pairs have been generated from spontaneous parametric down-conversion (SPDC), a process that is intrinsically probabilistic and thus relegated to a regime of low rates of pair generation. In contrast, semiconductor quantum dots can generate triggered entangled photon pairs through a cascaded radiative decay process and do not suffer from any fundamental trade-off between source brightness and multi-pair generation.

View Article and Find Full Text PDF

It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures.

View Article and Find Full Text PDF

We report optical positioning of single quantum dots (QDs) in planar distributed Bragg reflector (DBR) cavity with an average position uncertainty of ≈20 nm using an optimized photoluminescence imaging method. We create single-photon sources based on these QDs in determined micropillar cavities. The brightness of the QD fluorescence is greatly enhanced on resonance with the fundamental mode of the cavity, leading to an high extraction efficiency of 68% ± 6% into a lens with numerical aperture of 0.

View Article and Find Full Text PDF

The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as "coupling surfaces", are required, which are often difficult to realise technologically.

View Article and Find Full Text PDF

Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: