Publications by authors named "Rong-jun Wu"

Methane emissions from paddy fields can increase under future warming scenarios. Nevertheless, a comprehensive comparison of the temperature sensitivity of methane-related microbial processes remains elusive. Here, we revealed that the temperature sensitivity of methane production (activation energy () = 0.

View Article and Find Full Text PDF

Polymers have an excellent effect in terms of moderating fast neutrons with rich hydrogen and carbon, which plays an indispensable role in shielding devices. As the shielding of neutrons is typically accompanied by the generation of γ-rays, shielding materials are developed from monomers to multi-component composites, multi-layer structures, and even complex structures. In this paper, based on the typical multilayer structure, the integrated design of the shield component structure and the preparation and performance evaluation of the materials is carried out based on the design sample of the heat-resistant lightweight polymer-based interlayer.

View Article and Find Full Text PDF

In this research, a high-boron-content composite material with both neutron and γ rays shielding properties was developed by an optimized design and manufacture. It consists of 304 stainless steel as the matrix and spherical boron carbide (BC) particles as the functional particles. The content of BC is 24.

View Article and Find Full Text PDF

Ozone is one of the main atmospheric pollutants over surface layer, and its increasing surface ozone concentration and its impact on main crops have become the focus of the public. In order to explore ozone deposition law and environmental factors influencing ozone deposition process, this study used the micrometeorological methods and carried out the experiment under natural conditions. The results showed that during the observational period (the vigorously growing season of wheat), the mean value of ozone flux was -0.

View Article and Find Full Text PDF

The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve.

View Article and Find Full Text PDF

Based on the modeled products of actual evapotranspiration with NOAH land surface model, the temporal and spatial variations of actual evapotranspiration were analyzed for the Huang-Huai-Hai region in 2002-2010. In the meantime, the agricultural drought index, namely, drought severity index (DSI) was constructed, incorporated with products of MOD17 potential evapotranspiration and MOD13 NDVI. Furthermore, the applicability of established DSI in this region in the whole year of 2002 was investigated based on the Palmer drought severity index (PDSI), the yield reduction rate of winter wheat, and drought severity data.

View Article and Find Full Text PDF

High-speed countercurrent chromatography, combined with macroporous resin chromatography were applied to the separation and purification of flavans from Ixeris chinensis. Four flavans, namely, 5-methoxy-7,4'-dihydroxyflavan-3-ol (1), 5,7-dimethoxy-4'-hydroxyflavan-3-ol (2), 5,7-dimethoxy-4'-hydroxyflavan (3), and 5,7-dimethoxy-8-methyl-4'-hydroxyflavan (4), were obtained from I. chinensis for the first time.

View Article and Find Full Text PDF

Objective: To study the chemical constituents of the ethyl acetate extract from Panzeria alaschanica.

Methods: The chemical constituents of ethyl acetate extract from Panzeria alaschanica were isolated and purified by silica gel. Their structures were i- dentified by means of spectra.

View Article and Find Full Text PDF

The present study was designed to isolate and characterize the analgesic compounds of Artemisa sacrorum Ledeb. The EtOAc crude extracts from the aerial parts of Artemisa sacrorum Ledeb were separated by chromatography and the structures of new compounds were elucidated based on spectral analyses. Analgesic activities of the isolated compounds were assessed in rats with hot plate test and paw pressure assay.

View Article and Find Full Text PDF

Employing floating static chamber-chromatography method, the N2O diurnal fluxes at the water-air interface of four rivers (Tuanjie River, Jinchuan River, Inner and Outer Qinhuai River) and Jinniu Lake were monitored in Nanjing during summer. The results show that four rivers act as the sources of N2O emission, but Jinniu Lake is characterized by the absorption of N2O. The highest N2O flux from Inner Qinhuai presented at 20:00 because of the changing of hydrodynamic conditions.

View Article and Find Full Text PDF

From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content.

View Article and Find Full Text PDF

Experiments were conducted under open-top-chambers conditions to assess the photosynthetic responses of wheat plants (Triticum aestivum L., YangMail6) to supplemental UV-B radiation (10%-10.9% higher then control group, T1) and enhanced ozone [(100 +/- 9) nmol x mol(-1), T2], separately and in combination (combination treatment, T3), making use of LCpro + Portable Photosynthesis System and DIVING-PAM Fluorometer to determine gas exchange and chlorophyll fluorescence parameters.

View Article and Find Full Text PDF

A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer.

View Article and Find Full Text PDF

Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors.

View Article and Find Full Text PDF

Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched.

View Article and Find Full Text PDF

In order to provide basis for evaluating the effects of air pollutant such as O3 on crops yield and food security, the effects of O3 fumigation (ambient air, CK; 100 nL x L(-1), T1; 150 nL x L(-1), T2) on chlorophyll a fluorescence and gas exchange of a field-grown winter-wheat (Triticum aestivum L. Yang Mai 13) in different growing period were conducted via open-top chamber technique in conjunction with Diving-PAM fluorometer and LC pro + photosynthesis system. Results indicated that Fv/Fm caused by T1 was higher than 0.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Rong-jun Wu"

  • - Rong-Jun Wu's research primarily focuses on environmental sciences, emphasizing the effects of climate change on methane emissions and agricultural practices, specifically in paddy fields and the impacts on crop productivity.
  • - His recent article highlights that methane production in Chinese paddy soils is more sensitive to temperature increases than related oxidation processes, indicating significant implications for future climate scenarios.
  • - Additional studies explore innovative materials for neutron shielding in nuclear applications, including high-boron-content composites and heat-resistant polymers, showcasing Wu's diverse contributions to material science alongside environmental research.